專利名稱:一種在人工器官表面沉積氧化鈦和氮化鈦復(fù)合膜的方法
本發(fā)明涉及一種在人工器官上覆膜以改善人工器官血液相容性和耐久性的方法,尤其使用于人工心血管系統(tǒng)器官的覆膜。
人工器官的生物相容性和耐久性是人工器官用于臨床的根本保證,尤其是人工心臟、人工心臟瓣膜和左心室輔助泵等重要的心血管系統(tǒng)人工器官對耐久性和血液相容性有更高的要求。用天然材料(豬,牛心胞)、高分子材料制成的人工心臟及人工心臟瓣膜尚不能完全滿足上述要求,見對比文件1(德永皓一等,繁用人工臟器の現(xiàn)狀と將來,一人工弁一,人工臟器,1990,19(3),100-102等)。而以熱解碳、鈦合金、鈷合金和不銹鋼等無機(jī)材料為主體的人工心臟瓣膜目前還存在兩方面問題一是血液相容性尚不夠好,二是該類材料制成的瓣膜在植入人體后仍可能發(fā)生疲勞、腐蝕、磨損及脆性斷裂。具有最好血液相容性的熱解碳代表了以機(jī)械瓣為主體的已用于臨床的人工心臟瓣膜的最高水平,但對臨床要求來說,其血液相容性仍不是足夠高,且其韌性僅為金屬的1/100。本領(lǐng)域的多年研究表明,在以金屬等無機(jī)材料為主體的心血管系人工器官表面覆以血液相容性極好的材料,可以綜合其金屬材料機(jī)械強(qiáng)度高、耐久性好和覆膜材料血液相容性好的優(yōu)點(diǎn),從而成為有相當(dāng)應(yīng)用前景的人工器官材料發(fā)展的重要趨勢。對比文獻(xiàn)2(Mitamura.Y.et al,Development of a Ceramic Valve,Journal of BiomaterialsApplications,1989,4(11),33-55)論述了在鈦人工心臟瓣膜表面用物理氣相沉積方法覆膜氮化鈦的現(xiàn)有技術(shù)。目前,在心血管系人工器官上采用如物理氣相沉積、等離子體化學(xué)氣相沉積等方法在心臟瓣膜材料表面沉積氮化鈦、類金鋼石膜等現(xiàn)有覆膜技術(shù)存在兩方面的問題一是經(jīng)覆膜處理后的材料的血液相容性的改善程度有限,二是由于沉積方法的物理本質(zhì)局限性,薄膜與基體的結(jié)合強(qiáng)度較低,容易發(fā)生薄膜破裂剝落,危及病人生命安全。就現(xiàn)有技術(shù)來說,尚未見采用離子束增強(qiáng)沉積方法在以金屬等無機(jī)材料為主體的人工器官表面,尤其在人工心臟及人工心臟瓣膜表面制備血液相容性極好的氧化鈦和氮化鈦復(fù)合膜的有關(guān)報(bào)道。
本發(fā)明的目的是提供一種在人工器官表面沉積氧化鈦和氮化鈦復(fù)合膜的方法,它能有效地提高人工器官的耐磨損性和血液相容性。
本發(fā)明的目的可以由以下技術(shù)方案實(shí)現(xiàn),在表面存在氮化鈦膜的基礎(chǔ)上,復(fù)合膜的沉積可以通過
A在一定壓力的氧氣氛中,通過鈦蒸發(fā)沉積于人工器官材料表面,并輔以惰性氣體離子、氧離子轟擊人工器官材料表面而形成氧化鈦和氮化鈦復(fù)合膜。控制復(fù)合膜性能的參數(shù)是鈦的蒸發(fā)速率,工作室工作氣體壓力,惰性氣體離子、氧離子轟擊的能量和劑量。本方案中,是以氧氣為氣氛環(huán)境,氧氣壓力為2-17×10-4Pa,鈦以蒸發(fā)方式沉積于人工器官材料表面,鈦的蒸發(fā)速率為1.0-7.0/s,以惰性氣體或氧離子為增強(qiáng)離子束,其能量為5-40keV,密度為5-40μA/cm2。
B在一定壓力的氧氣氛中,通過惰性氣體離子直接轟擊鈦靶,使其濺射出鈦原子并沉積于人工器官材料表面,并分別以氧離子轟擊沉積于人工器官材料表面的薄膜,使其形成氧化鈦和氮化鈦復(fù)合膜。控制復(fù)合膜性能的參數(shù)是鈦的濺射速率,工作室氣體壓力,氧離子轟擊的能量和劑量。本方案中,在氧氣環(huán)境壓力為0.5-65×10-3Pa,鈦以濺射方式沉積于人工器官表面,鈦的濺射速率為0.1-5.0/s,以氧離子為增強(qiáng)離子束,氧離子的能量為0.5-40keV,密度為10-100μA/cm2。
通過A、B兩種方法所合成的氧化鈦和氮化鈦(TiO2-x/TiN)復(fù)合膜的氧含量低于標(biāo)準(zhǔn)化學(xué)計(jì)量,x的范圍為0.01-0.15,所形成的氧化鈦和氮化鈦復(fù)合膜厚度為0.1-10μm。
由本發(fā)明所公開的在人工器官表面沉積氧化鈦和氮化鈦復(fù)合薄膜的方法所制備的復(fù)合膜在以下幾方面比現(xiàn)有技術(shù)有明顯進(jìn)步其血液相容性明顯優(yōu)于熱解碳及其它人工心臟瓣膜材料;覆膜與基體的結(jié)合強(qiáng)度遠(yuǎn)遠(yuǎn)高于現(xiàn)已用于人工心臟瓣膜材料表面覆膜的方法(如物理氣相沉積,等離子化學(xué)氣相沉積等)形成的薄膜,具有數(shù)倍或一個(gè)數(shù)量級以上的結(jié)合強(qiáng)度的優(yōu)勢;覆膜的硬度為現(xiàn)有瓣膜材料的5-10倍。經(jīng)本發(fā)明所述方法處理所獲得的人工器官的血液相容性,抗疲勞,抗腐蝕和耐磨損的性能得到全面提高。
本發(fā)明的
如下圖1是方法A在人工器官表面沉積氧化鈦和氮化鈦復(fù)合膜的示意圖。
圖2是方法B在人工器官表面沉積氧化鈦和氮化鈦復(fù)合膜的示意圖。
以下結(jié)合附圖對本發(fā)明作進(jìn)一步說明。
參見附圖1,首先利用對比文件2所述方法在人工器官材料如鈦合金表面沉積氮化鈦,即先在真空度為6.5×10-5Pa的靶室2中充人壓力為7×10-4Pa氮?dú)猓烧舭l(fā)坩鍋4向樣品臺3上的樣品蒸發(fā)鈦,蒸發(fā)速率為10/s,同時(shí)由離子源1引出氙離子轟擊樣品表面,氙離子的能量為40keV,密度為40μA/cm2。進(jìn)而在靶室2重新獲得真空(真空度為6.5×10-5Pa),充入壓力為7×10-4Pa的氧氣,再由坩鍋4以3/s的蒸發(fā)速率向樣品臺3上的樣品蒸發(fā)鈦,同時(shí)由離子源1引出能量為40kev,密度為13μA/cm2的氙離子轟擊樣品表面。
參見附圖2,在真空度為13×10-4Pa的靶室1中充入壓力為6.5×10-3Pa的氮?dú)?,由離子源2引出惰性氣體轟擊濺射靶4,使濺射靶4的鈦原子沉積到樣品臺5上的樣品上,其沉積速率為1/s,同時(shí)由離子源3引出能量為20keV,密度為60μA/cm2的氮離子注入樣品,實(shí)現(xiàn)氮化鈦的合成。然后在靶室中重新獲得真空(真空度為1.3×10-4Pa),再充入壓力為1.2×10-2Pa的氧氣,使離子源2引出的情性氣體離子轟擊靶4的鈦,使鈦原子濺射沉積到樣品上,沉積速率為1.0/s,同時(shí)從離子源3引出能量為30keV,密度為90μA/cm2的氧離子注入樣品,實(shí)現(xiàn)TiO2-x的合成。
權(quán)利要求
1.一種在人工器官表面沉積氧化鈦和氮化鈦復(fù)合膜的方法,其特征在于在人工器官表面具有氮化鈦膜的基礎(chǔ)上,以氧為氣氛環(huán)境,壓力為2-17×10-4Pa,鈦以蒸發(fā)方式沉積于人工器官材料表面,蒸發(fā)速率為1.0-7.0/s,以惰性氣體或氧離子為增強(qiáng)離子束,其能量為5-40keV,密度為5-40μA/cm2,形成氧化鈦和氮化鈦復(fù)合膜。
2.一種在人工器官表面沉積氧化鈦和氮化鈦復(fù)合膜的方法,其特征在于在人工器官表面具有氮化鈦膜的基礎(chǔ)上,以氧為氣氛環(huán)境,氧氣環(huán)境壓力為0.5-65×10-3Pa,鈦以濺射方式沉積于材料表面,鈦的濺射速率為0.1-5.0/s,以氧離子為增強(qiáng)離子束,氧離子的能量為0.5-40keV,密度為10-100μA/cm2,合成氧化鈦和氮化鈦復(fù)合膜。
3.根據(jù)權(quán)利要求
1所述的一種在人工器官表面沉積氧化鈦和氮化鈦復(fù)合膜的方法,其特征在于所合成的復(fù)合膜的厚度為0.1-10μm。
4.根據(jù)權(quán)利要求
2所述的一種在人工器官表面沉積氧化鈦和氮化鈦復(fù)合膜的方法,其特征在于所合成的復(fù)合膜的厚度為0.1-10μm。
專利摘要
本發(fā)明公開一種在人工器官表面沉積氧化鈦和氮化鈦復(fù)合膜的方法,在具有氮化鈦薄膜的基礎(chǔ)上,以惰性氣體或氧離子為增強(qiáng)離子束,在壓力為2-17×10
文檔編號A61F2/24GKCN1049017SQ95111386
公開日2000年2月2日 申請日期1995年5月31日
發(fā)明者黃楠, 柳襄杯, 陳元儒, 楊萍, 蔡光軍, 鄭志宏, 周祖堯, 王曦, 肖靜, 薛振南, 奚廷斐 申請人:西南交通大學(xué), 中國科學(xué)院上海冶金研究所導(dǎo)出引文BiBTeX, EndNote, RefMan專利引用 (4),