專利名稱:合式乞巧板的制作方法
技術(shù)領域:
一種合式乞巧板,屬于益智類拼排玩具。
七巧板、拼板玩具,由燕幾圖演變而來。用正方形薄板分截為七塊,拼排成多種多樣的事物圖形。廣泛流傳于世界各國,在國外稱為“唐圖”(tangiam)意即中國圖板。(摘自七九年版《辭?!返谪チ?。七巧板之巧,在于它能從一個正方形轉(zhuǎn)排為兩個正方形之巧。這種巧并不在于“七”,而是由正確的組塊形狀導致的。畢竟是它的結(jié)構(gòu)簡練,形式單純,因而變化有限,不宜表現(xiàn)較為廣泛的事物形態(tài)。這是由于它局限于正方形之內(nèi),困乏在“七”塊之中,妨礙了它的演變和發(fā)展。
合式乞巧板的特征是突破了正方形的約束,跨越了七個組塊的界限,適當?shù)貞玫妊苯侨切?以下簡稱三角形)輾轉(zhuǎn)分合的規(guī)律對應“乞巧”風俗的情節(jié),使它能奏巧集趣,具備益智的功能。
“乞巧,舊時民間風俗,婦女于陰歷七月七日夜間向織女星乞求智巧,謂之“乞巧”。和凝《宮詞》闌珊星斗綴珠光、七夕宮嬪乞巧忙”。(摘自七九年版《辭海》第四六四頁)。
現(xiàn)將合式乞巧板的附圖加以簡要說明如下
圖1,合式乞巧板結(jié)構(gòu)圖。其中
圖1-1為合式乞巧板21塊板的三種圖形,
圖1-2為21塊板按面積大小劃分成月、日、夕三組,每組,七塊,與七月七日七夕相對應。
圖2,合式乞巧板拼排乘方圖,共7種乘方。因為設日組的一塊正方形面積為a2的話,那么合式乞巧板21塊總面積等于24a2,24又為2,3,4,6,8,12的最小公倍數(shù)。
圖3,合式乞巧板拼排漢字(圖3-1),拉丁文字(圖3-2)和動物(圖3-3)實例。
圖4,每付合式乞巧板拼排的全等圖形實例。
圖5,合式乞巧板拼排的相似形。其中圖5-1為一副拼排的圖形。圖5-2為一付拼排的2個圖形,并與5-1為相似形,圖5-3為一付拼排的3個圖形,仍相似于圖5-1,5-2。
合式乞巧板的形式結(jié)構(gòu)是以3橫4縱的7條直線互相垂直,等距排列所形成的6個正方格,再畫齊正方格的對角線,便成為2×3×4=24個全等的三角形。依據(jù)這24個三角形劃分為 3種形狀①(拼合或劃分成相似形的)三角形。②(二塊腰邊錯角拼合)平行四邊形。③(二塊底邊拼合)正方形。4種面積①2a2,②a2,③ (a2)/2 ,④ (a2)/4 。5種邊線①
a,②2a,③
a,④a,⑤
a。如附
圖1的1-1所示(a取0以上的自然數(shù))。
按面積的大小將組塊分為月日夕3組。每組都有三角形5塊,平行四邊形1塊,正方形1塊。月組每塊都是2a2的7塊,計14a2。日組每塊都是a2的7塊,計7a2。夕組 (a2)/2 的5塊, (a2)/4 的三角形2塊,計7塊3a2。3組7塊共計21塊,與七月七日七夕對應。如
圖1的1-2所示設日組的正方形=a2的話,那么這24a2便是2,3,4,6,8,12的最小公倍數(shù)。這樣21塊便能從7個乘方逐一分截出來,也可排出來。(附圖2的1-7)合式乞巧板不僅可以排出上述的7種乘方,還能排出每副幾個全等的幾何圖形,或逐副排出幾種相似的幾何圖形。如附圖4的1-7是每副3個全等形,共有7種。又如附圖5的5-1是每副1個,5-2每副2個,5-3每副4個,共3副7個梭形都相似??墒沁€能排出長方形,平行四邊形,梯形等如上的相似形。
合式乞巧板不僅能排出幾何圖形,還能排出大部份的漢字以及全部的拉丁字母,和各種各樣的事物圖形。如附圖3的3-1是漢字“合式乞巧板”。3-2是拉丁字母“AD”3-3是引頸長啼的雄雞。
由于合式乞巧板的組塊形狀合式,三組21塊數(shù)量適中,不至于多成累贅,少到捉襟見肘之感。所以它比原來的七巧板更利于乞智求巧。增加了趣味性和娛樂性。
合式乞巧板所拼綴出來的圖案及文字,可以作為房屋,室內(nèi)外及各種器物的美化、裝飾各種廣告宣傳之用??梢灾瞥蓤D張、畫冊、錄象、柔件以供欣賞和研究。
合式乞巧板除供一人拼玩之外還可供兩人以上的“對邊”“補缺”類似棋類的競賽。也可根據(jù)試題進行智力競賽。
權(quán)利要求1.一種合式乞巧板,其特征在于它包括有三種形狀,四種面積,五種邊長的組塊,分配在月日夕3組之中,每組的塊數(shù)形狀都相同,都是三角形的5塊,平行四邊形的1塊,正方形的1塊,月組每塊都是2a2,7塊=14a2,日組每塊都是a2,7塊=7a2,夕組 (a2)/2 5塊, (a2)/4 的三角形2塊,共計7塊3a2,總共是24a2寓于21塊之中,還蘊蓄七巧板于其內(nèi),對應舊時民間乞巧的情節(jié),所組成的合式乞巧板。
專利摘要一種益智拼排類玩具,它由三種形狀,四種面積,五種邊長的組塊,分配在稱為月日夕3組之中,每組的塊數(shù)形狀都相同,都是三角形的5塊,平行四邊形的1塊,正方形的1塊,月組每塊都是2a
文檔編號A63F9/06GK2045659SQ8921146
公開日1989年10月11日 申請日期1989年2月23日 優(yōu)先權(quán)日1989年2月23日
發(fā)明者沙一德 申請人:沙一德