欧美在线观看视频网站,亚洲熟妇色自偷自拍另类,啪啪伊人网,中文字幕第13亚洲另类,中文成人久久久久影院免费观看 ,精品人妻人人做人人爽,亚洲a视频

依托相間界面特性達(dá)成試樣液流傳輸?shù)奈⒘骺匦酒b置的制作方法

文檔序號(hào):12911673閱讀:177來(lái)源:國(guó)知局

本發(fā)明涉及一種依托相間界面特性達(dá)成試樣液流傳輸?shù)奈⒘骺匦酒b置,屬于分析測(cè)試領(lǐng)域。



背景技術(shù):

關(guān)于微流控技術(shù)其本身的整體概貌而言,可以參見著名微流控專家林炳承先生不久前出的專著“圖解微流控芯片實(shí)驗(yàn)室”,該專著已經(jīng)由科學(xué)出版社出版,該專著對(duì)于微流控技術(shù)的過(guò)去、現(xiàn)在,以及,未來(lái)展望等等方面,都有著詳盡的、深入到具體細(xì)節(jié)的長(zhǎng)篇論述。

微流控芯片經(jīng)常應(yīng)用到的領(lǐng)域包括對(duì)含有生物大分子的試樣溶液進(jìn)行各種分析、檢測(cè)。

微流控芯片的基本架構(gòu),包括刻蝕有槽道的基片以及與之貼合在一起的蓋片,所述基片上的液流通道,在裝配上蓋片之前,表觀上看就是一些槽道,要等到在其上覆蓋了蓋片之后,才真正閉合形成所述液流通道,該槽道的槽道內(nèi)表面連同包繞著該槽道的那部分蓋片一起構(gòu)成所述的液流通道;那么,顯然,裝配完成了之后的該液流通道,它的內(nèi)表面面積的主要部分是那個(gè)槽道的內(nèi)表面面積,換句話說(shuō),該槽道內(nèi)表面的狀態(tài)或性質(zhì)基本上決定了該液流通道的整體狀態(tài)或性質(zhì);因此說(shuō),這個(gè)構(gòu)建在基片上的槽道的內(nèi)表面狀態(tài)或內(nèi)表面性質(zhì)是關(guān)鍵因素;原則上講,任何的能夠保持或基本保持其固體形態(tài)的材料,都能夠用來(lái)制作基片及蓋片,比如,能夠用作基片及蓋片的材料可以是單晶硅片、石英片、玻璃片、高聚物如聚二甲基硅氧烷、聚甲基丙烯酸甲酯、聚碳酸酯等等;當(dāng)然,基片的選材和蓋片的選材可以相同,也可以不相同;從材料耗費(fèi)、制作難度以及應(yīng)用普及前景等等方面來(lái)看,這些材料之間存在不小差異,尤其是那個(gè)基片的選材,影響較大。

在各種基片制作材料中,聚二甲基硅氧烷,即pdms,相對(duì)而言十分容易成型,在這樣的基片上制作槽道極其簡(jiǎn)單,并且該材料成本低廉,以該聚二甲基硅氧烷材料制作基片,在其上壓制或刻蝕槽道,并與玻璃或聚丙烯或其它塑料片等廉價(jià)材料制作的蓋片相配合,貌似是一種比較理想的選擇;當(dāng)然,蓋片材料也可以選擇使用廉價(jià)的聚二甲基硅氧烷材料:那么,這種基片選材為聚二甲基硅氧烷材料的方案,材料極便宜,制作極簡(jiǎn)易,看似也應(yīng)當(dāng)極易于普及、推廣。

但是,事情并非如此簡(jiǎn)單。

其一,這個(gè)聚二甲基硅氧烷材料,即縮寫字母pdms所指代的材料,其本身是一種強(qiáng)烈疏水的材料,在這一材料上構(gòu)建槽道,如果不進(jìn)行針對(duì)該槽道表面的改性操作,那么,整體 裝配完成之后,即蓋上蓋片后,因結(jié)構(gòu)中的所述槽道其內(nèi)表面占據(jù)了大部分的液流通道的內(nèi)表面,那么,該pdms槽道內(nèi)表面其強(qiáng)烈的疏水特性,是決定性因素,它會(huì)使得類似于水溶液的極性液體微細(xì)液流的通過(guò)變得十分困難,其流動(dòng)阻力之大,甚至一般的微泵都難以推動(dòng),當(dāng)然,如果蓋片也選擇使用該pdms材料,那么,問(wèn)題基本上一樣,大同小異;因此,在現(xiàn)有技術(shù)之中,特別針對(duì)該pdms材料上的槽道內(nèi)表面進(jìn)行改性修飾,是必須的操作;那么,這個(gè)針對(duì)pdms槽道內(nèi)表面的改性操作很麻煩嗎?那倒也不是這個(gè)問(wèn)題,構(gòu)成嚴(yán)重技術(shù)困擾的,是另一個(gè)問(wèn)題:這個(gè)pdms材料基片其體相內(nèi)部的pdms聚合物分子具有自動(dòng)向表面擴(kuò)散、遷移的特性,這種基片體相內(nèi)部pdms聚合物分子自動(dòng)向表面擴(kuò)散、遷移的特性,將使得經(jīng)過(guò)表面改性修飾的那個(gè)槽道其內(nèi)表面的改性之后的狀態(tài)并不能維持足夠長(zhǎng)的時(shí)間,那個(gè)經(jīng)表面改性之后的槽道其內(nèi)表面狀態(tài)的維持時(shí)間大致僅夠完成實(shí)驗(yàn)室內(nèi)部測(cè)試實(shí)驗(yàn)的時(shí)間需要;換句話說(shuō),經(jīng)過(guò)表面改性或表面修飾的該pdms槽道內(nèi)表面,其改性之后或曰修飾之后所形成的表面狀態(tài)并不能持久,而是很快地自動(dòng)趨于或曰變回表面改性之前的表面狀態(tài),在較短的時(shí)間里就回到那種原本的強(qiáng)烈疏水的表面狀態(tài),那么,試想,這樣的微流控芯片能夠大量制作、大量?jī)?chǔ)存、廣泛推廣嗎,答案很明顯,那就是,不可能。這個(gè)pdms材料上的槽道,不做表面修飾的話,類似于水溶液的極性溶液微細(xì)液流無(wú)法泵送通過(guò),芯片也就沒法使用;而如果做了表面修飾,又無(wú)法持久保持其修飾之后的狀態(tài),還是同樣無(wú)法推廣應(yīng)用。

據(jù)文獻(xiàn)報(bào)道,有一種權(quán)宜的解決方案,是在待測(cè)試樣溶液中加入少量的表面活性劑,以便在測(cè)試的過(guò)程中,在該pdms槽道內(nèi)表面臨時(shí)構(gòu)建動(dòng)態(tài)的、暫時(shí)有效的表面親水層;然而,由于表面活性劑的兩親性質(zhì),該方案所引入的表面活性劑必然同時(shí)也會(huì)與試樣溶液中的被測(cè)成分發(fā)生結(jié)合作用,使得被測(cè)成分不能夠被正常檢出或其被檢出比率可疑地降低;該表面活性劑甚至可能以膠束形式將被測(cè)成分完全包裹,使得被測(cè)成分無(wú)法被檢出或識(shí)別;因此,該種向試樣溶液中添加表面活性劑的方案,遠(yuǎn)不是一個(gè)理想的解決方案。

那么,如何做到既能夠利用廉價(jià)的pdms材料來(lái)制作基片,而又能夠解除所述槽道內(nèi)表面修飾狀態(tài)無(wú)法持久、芯片無(wú)法大量制作、大量?jī)?chǔ)備進(jìn)而廣泛推廣這樣一個(gè)令本領(lǐng)域眾多專業(yè)人員長(zhǎng)期糾結(jié)的困擾,就是一個(gè)明擺著的其技術(shù)障礙不可小覷的高難度問(wèn)題。

該高難度問(wèn)題已經(jīng)存在很多個(gè)年頭了,迄今為止,尚未得到妥善解決。

其二,未經(jīng)表面修飾的pdms材料,上文已經(jīng)述及,其表面強(qiáng)烈疏水,這種強(qiáng)烈疏水的材料表面并且還有另一個(gè)問(wèn)題,那就是,這種強(qiáng)烈疏水的pdms表面會(huì)吸附生物大分子,并且,這些被吸附的生物大分子還會(huì)進(jìn)一步地在pdms表面上更深一步的沉陷,漸陷漸深,直至沉陷入到pdms基片的體相之內(nèi),其實(shí),這種過(guò)程,部分地也是由于pdms材料體相內(nèi)部聚合物分子具有向表面擴(kuò)散、遷移運(yùn)動(dòng)所導(dǎo)致;這種情況,也可以從另一個(gè)角度來(lái)解釋,即,持續(xù)不斷地由pdms體相內(nèi)部向其表面擴(kuò)散、遷移的那些聚合物分子,其運(yùn)動(dòng)的結(jié)果,是逐 漸地將那些已經(jīng)被表面吸附的生物大分子卷入pdms基片的體相之內(nèi),簡(jiǎn)單地說(shuō),這些被吸附的生物大分子就是被pdms基片體相吞沒了;那么,這種pdms基片體相吞沒生物大分子的現(xiàn)象,其所造成的影響,必然是導(dǎo)致涉及生物大分子的各類實(shí)驗(yàn)測(cè)試數(shù)據(jù)的嚴(yán)重偏差。

如上所述,pdms基片的問(wèn)題是,它不但表面吸附生物大分子,而且吞沒生物大分子,這樣一來(lái),作為實(shí)驗(yàn)測(cè)試對(duì)象的生物大分子其消失不會(huì)因?yàn)楸砻骘柡臀蕉V?,而是,不斷被吸附,還不斷地被吞沒。

關(guān)于pdms基片在相關(guān)實(shí)驗(yàn)測(cè)試過(guò)程中其體相不斷吞沒測(cè)試相關(guān)生物大分子的現(xiàn)象,另一種解釋是說(shuō),pdms體相內(nèi)存在大量的微小氣孔,相關(guān)生物大分子被表面吸附之后,沉陷進(jìn)入這些微小氣孔,進(jìn)而被吞沒;然而,本案發(fā)明人認(rèn)為,那些能夠容許微小尺度的空氣分子擠入其間的所述微小氣孔,不等于說(shuō)它們也能直接容許相對(duì)大尺度的生物大分子進(jìn)入,兩者在尺度上差別巨大,不可一概而論。撇開解釋,無(wú)論怎樣,作為相關(guān)測(cè)試分析對(duì)象的生物大分子被pdms基片槽道內(nèi)表面吸附,進(jìn)而不斷被pdms基片體相所吞沒,這是已知客觀存在的現(xiàn)象。

為了阻止這種pdms基片體相對(duì)于生物大分子的吞沒作用,可以從遏制pdms表面對(duì)生物大分子的吸附來(lái)著手解決,辦法就是針對(duì)該pdms材料表面進(jìn)行化學(xué)修飾改性,對(duì)于以pdms為基片材料的情況來(lái)講,就是對(duì)所述的槽道部分的表面進(jìn)行化學(xué)修飾改性,經(jīng)過(guò)化學(xué)修飾改性的所述槽道內(nèi)表面,能夠遏制其對(duì)生物大分子的吸附,進(jìn)而避免生物大分子被pdms基片體相所吞沒;但是,還是那個(gè)老問(wèn)題,那就是,pdms材料表面上的化學(xué)修飾改性之后的表面狀態(tài)無(wú)法持久保持,該pdms基片體相內(nèi)部的聚合物分子其自動(dòng)向表面擴(kuò)散、遷移的過(guò)程,會(huì)很快地將那個(gè)經(jīng)過(guò)表面化學(xué)修飾改性的槽道內(nèi)表面狀態(tài)變回原本的強(qiáng)烈疏水并且強(qiáng)烈吸附生物大分子的狀態(tài),換句話說(shuō),無(wú)論該領(lǐng)域?qū)I(yè)人員們?cè)鯓诱垓v,該pdms基片其槽道內(nèi)表面總是快速地向強(qiáng)烈疏水表面狀態(tài)演變。

那么,如何既能夠獲得pdms材料價(jià)格極其低廉、基片制作極其簡(jiǎn)易的好處,又能夠達(dá)成長(zhǎng)期遏制該pdms基片槽道內(nèi)表面對(duì)生物大分子的吸附進(jìn)程,進(jìn)而阻止pdms基片體相對(duì)生物大分子的吞沒作用,使得相關(guān)芯片制成品能夠維持一個(gè)足夠長(zhǎng)時(shí)間的、合理的保質(zhì)期,就是一個(gè)十分棘手的難題。該難題如同上文述及的另一個(gè)難題一樣,同樣令本領(lǐng)域眾多專業(yè)人員長(zhǎng)期糾結(jié)、困擾,該難題同樣是一個(gè)明擺著的其技術(shù)障礙不可小覷的高難度問(wèn)題。該難題也已經(jīng)存在很多個(gè)年頭了,迄今為止,也尚未得到妥善解決。

其三,該聚二甲基硅氧烷材料,也即pdms材料,其中聚合物分子間的作用力很小,其體相內(nèi)部的低聚合度的聚合物分子處于不斷向表面遷移的動(dòng)態(tài)過(guò)程中,因此,包含pdms基片材料的芯片在其成型后,芯片其管道內(nèi)壁面的表面形貌會(huì)因所述的低聚合度聚合物分子不斷地遷移、涌向該表面而改變,其形貌的改變有點(diǎn)類似于流變變形、流淌變形或蠕變變形所 可能造成的形貌改變;在某些低聚合度成分比例比較高的pdms材料中,該種有點(diǎn)類似于流變變形、流淌變形或蠕變變形的現(xiàn)象會(huì)表現(xiàn)得比較顯著;該種包含pdms基片的芯片其成型后的管道內(nèi)壁表面形貌的動(dòng)態(tài)改變性質(zhì),也即所述的有點(diǎn)類似于流變變形的性質(zhì)或流淌變形的性質(zhì)或蠕變變形的性質(zhì),本案套用流變一詞,統(tǒng)合地,也稱之為流變性質(zhì)或流變變形性質(zhì),相應(yīng)的所述管道內(nèi)壁面形貌的動(dòng)態(tài)改變,本案也稱其為流變;如上所述,因該種材料其自身具有的一定的如上所述的流變變形性質(zhì),其制成品實(shí)際上會(huì)慢慢地流變變形而致該制成品整個(gè)結(jié)構(gòu)形態(tài)發(fā)生改變;其流變變形性質(zhì)所造成的影響,從宏觀角度看是不易覺察的,但是,對(duì)于其內(nèi)部結(jié)構(gòu)十分精細(xì)的微流控芯片來(lái)說(shuō),該流變性質(zhì)卻會(huì)造成比較大的影響,因此,預(yù)先制作時(shí)所形成的所述液流通道也即所述管道,因所述管道其管腔的壁面主要是pdms材質(zhì)的壁面,所以,該管道的橫截面面積實(shí)際上會(huì)隨著時(shí)間的推移因流變而逐漸變小,換句話說(shuō),由于所述流變的原因,用于試樣液體流動(dòng)通過(guò)的本來(lái)就比較微細(xì)的所述管道其管腔會(huì)越變?cè)秸?,在流變時(shí)間足夠長(zhǎng)的情況下,甚至該管道的管腔會(huì)部分地閉合或全部地閉合,進(jìn)而使得試樣液流通道被徹底阻斷,即便是還沒有達(dá)到所述管道其管腔部分地閉合或全部地閉合的程度,那個(gè)管道其所能提供的流體通道已經(jīng)因流變而變窄,那么,在管道其內(nèi)表面原本就是強(qiáng)烈疏水的情況下,含水試樣液體就更加難以通過(guò)這樣因流變而變得更窄的微細(xì)通道了,那么,如何抵制基片流變影響,長(zhǎng)期維持該管道的基本架構(gòu)不發(fā)生嚴(yán)重變形,并且,保持所述管道的長(zhǎng)期通暢,就是一個(gè)亟需解決的問(wèn)題。



技術(shù)實(shí)現(xiàn)要素:

本發(fā)明所要解決的技術(shù)問(wèn)題是,提供一個(gè)一攬子的解決方案,同時(shí)解決上文述及的一系列難題。

本發(fā)明通過(guò)如下方案解決所述技術(shù)問(wèn)題,該方案提供的裝置是一種依托相間界面特性達(dá)成試樣液流傳輸?shù)奈⒘骺匦酒b置,該裝置的結(jié)構(gòu)包括微流控芯片,該微流控芯片的結(jié)構(gòu)包括相互貼合裝設(shè)在一起的基片和蓋片,該微流控芯片其試樣液流進(jìn)樣端與該試樣液流流動(dòng)的終端相互遠(yuǎn)離,該進(jìn)樣端與該終端之間的距離介于3厘米與10厘米之間,重點(diǎn)是,該基片其材質(zhì)是聚二甲基硅氧烷材質(zhì),該基片其表面是原生形態(tài)的表面,該原生形態(tài)的表面其意思指的是沒有經(jīng)過(guò)任何表面化學(xué)修飾或任何表面化學(xué)改性的該材質(zhì)的原生形態(tài)的表面,該裝置的結(jié)構(gòu)還包括微型超聲波換能器,以及,高頻振蕩電訊號(hào)傳輸電纜,該高頻振蕩電訊號(hào)傳輸電纜的一端與該微型超聲波換能器連接在一起,該微型超聲波換能器貼附地裝設(shè)在該微流控芯片的蓋片或基片的鄰近所述終端的位置;該微型超聲波換能器其主要功能是在微流控芯片實(shí)際進(jìn)樣測(cè)試時(shí),利用所述進(jìn)樣端以及所述終端與該微型超聲波換能器裝設(shè)位置之間的距離差異以及其所感受到的超聲波強(qiáng)度上的差異,誘導(dǎo)形成所述進(jìn)樣端其界面張力與所述終端其界面張力之間的差異,該微流控芯片該兩端之間的界面張力差異會(huì)在該微流控芯片的該兩 端之間形成壓力差異,該壓力差異會(huì)驅(qū)動(dòng)試樣溶液向所述終端流動(dòng);柔軟并具彈性的該聚二甲基硅氧烷材質(zhì)的基片其功能包括以其對(duì)超聲波強(qiáng)烈吸收的性質(zhì),對(duì)超聲波進(jìn)行強(qiáng)烈吸收,并藉此在該微流控芯片該終端到該進(jìn)樣端之間的有限的短距離之內(nèi)實(shí)現(xiàn)超聲波強(qiáng)度的快速遞減;以及,許多的二氧化硅顆粒,該許多的二氧化硅顆粒填充在該微流控芯片的管道內(nèi),所述管道其管腔被該許多的二氧化硅顆粒所填滿,該二氧化硅顆粒其粒徑范圍介于10微米與200微米之間,該二氧化硅顆粒是二氧化硅晶態(tài)顆粒、二氧化硅玻璃顆?;蚨趸璩煞制渌贾亓堪俜直仍?0%以上的無(wú)機(jī)玻璃顆粒。

該二氧化硅顆粒其粒徑可以是介于10微米與200微米之間的根據(jù)實(shí)際需要而任意指定的粒徑,所述粒徑例如10微米、30微米、70微米、100微米、150微米或200微米,等等。

進(jìn)一步優(yōu)選的該二氧化硅顆粒其粒徑的范圍是介于100微米與200微米之間。

該二氧化硅顆粒其形貌不限,該二氧化硅顆粒例如可以是球形顆粒、棒形顆粒、長(zhǎng)方體形顆?;蛉我鉄o(wú)定形顆粒。

各種二氧化硅顆粒其本身的制造技術(shù)是公知技術(shù)。

各種形態(tài)、各種規(guī)格的二氧化硅顆粒市場(chǎng)均有售。

該二氧化硅顆粒也可以向?qū)I(yè)廠家定制。

所述管道其內(nèi)徑的優(yōu)選范圍是介于500微米與1000微米之間;但是,相較于上述優(yōu)選的管道內(nèi)徑范圍,更細(xì)小的管道內(nèi)徑或更粗大的管道內(nèi)徑也是本案所允許的。

僅就超聲波換能器一詞其本身的技術(shù)含義對(duì)于超聲波技術(shù)領(lǐng)域的專業(yè)人員來(lái)說(shuō),是公知的。

各種尺寸、各種形狀的超聲波換能器均有市售;市售的微型超聲波換能器其尺寸可以小到僅以毫米計(jì)算的量級(jí)。

僅就微型超聲波換能器其在一般工業(yè)應(yīng)用對(duì)象固態(tài)物體表面上的固定技術(shù)其本身而言,對(duì)于超聲波技術(shù)領(lǐng)域的專業(yè)人員來(lái)說(shuō),是已知的一般技術(shù)。本案不對(duì)此展開贅言。

僅就裸的pdms基片其本身的槽道模壓或刻蝕技術(shù)來(lái)說(shuō),是極簡(jiǎn)單的已知的技術(shù);同樣地,在裸的pdms基片上開孔洞的技術(shù)更是已知的簡(jiǎn)單技術(shù)。本案亦不對(duì)此展開贅言。

所涉高頻振蕩電訊號(hào)傳輸電纜其各種規(guī)格的工業(yè)產(chǎn)品市場(chǎng)均有售。

該裝置的結(jié)構(gòu)還可以包括高頻振蕩電訊號(hào)發(fā)生器;所述高頻振蕩電訊號(hào)傳輸電纜其另一端可以與該高頻振蕩電訊號(hào)發(fā)生器連接。

所涉高頻振蕩電訊號(hào)發(fā)生器其本身的技術(shù),對(duì)于超聲波技術(shù)領(lǐng)域的專業(yè)人員來(lái)說(shuō),是簡(jiǎn)單的和公知的;所述高頻振蕩電訊號(hào)發(fā)生器可以向超聲波儀器專業(yè)廠家定制。

該微型超聲波換能器其額定超聲波發(fā)射功率的優(yōu)選范圍是介于2毫瓦與9000毫瓦之間;該微型超聲波換能器其在運(yùn)行時(shí)所發(fā)射的超聲波的頻率的優(yōu)選范圍是介于100khz與12mhz之間。

本案裝置當(dāng)然還可以進(jìn)一步包括一些附件,所述附件例如能夠與微流控芯片配合使用的電學(xué)或光學(xué)檢測(cè)設(shè)備。所述電學(xué)、光學(xué)等等與微流控芯片配合使用的設(shè)備,可以參見所述專著。

芯片結(jié)構(gòu)中的所述蓋片,其材質(zhì)可以允許是任何的電絕緣性材質(zhì),例如:聚丙烯、玻璃、聚甲基丙烯酸甲酯、聚二甲基硅氧烷,等等,為了做出更小尺寸的微流控芯片,比如做成長(zhǎng)度僅2.0厘米到3.0厘米的超小尺寸的微流控芯片,并在該極短的距離內(nèi)實(shí)現(xiàn)對(duì)超聲波的極快速衰減,可以優(yōu)選聚二甲基硅氧烷來(lái)作為蓋片。當(dāng)然,在大尺寸的微流控芯片上選擇使用聚二甲基硅氧烷來(lái)作為所述蓋片,也是本案技術(shù)方案所允許的。

所述蓋片及基片其厚度可以允許是任意設(shè)定的便于裝配的厚度,推薦的厚度或曰優(yōu)選的厚度是介于1.0毫米與5.0毫米之間。較小的厚度有利于節(jié)省材料。

本發(fā)明的優(yōu)點(diǎn)是,在所述微流控芯片的所述終端其鄰近位置貼附地裝設(shè)微型超聲波換能器,以該微型超聲波換能器發(fā)射低功率、高頻頻段的超聲波,同時(shí),利用聚二甲基硅氧烷基片其對(duì)超聲波的強(qiáng)烈吸收能力,在比較短的距離內(nèi),也就是,從所述終端到所述進(jìn)樣端之間的僅數(shù)厘米尺度的很短的距離內(nèi),達(dá)成超聲波強(qiáng)度的快速遞減,藉此在該微流控芯片的所述兩端造成所述界面張力的差異,進(jìn)而,利用該兩端之間的界面張力的差異其所形成的該兩端之間的壓力差異,驅(qū)動(dòng)試樣液流在所述管道內(nèi)向所述終端方向流動(dòng)。藉由本案液流驅(qū)動(dòng)方案,完全免除了傳統(tǒng)意義上的微泵之類的設(shè)備;免除了微泵的微流控芯片,其結(jié)構(gòu)更簡(jiǎn)潔,其制作工序更少,其制作成本更低,該種簡(jiǎn)潔結(jié)構(gòu)更有利于達(dá)成微流控芯片的低成本應(yīng)用。

本案其方案并且將所述管道內(nèi)除了電極安裝所占空間之外的所有空余空間全部用所述二氧化硅顆粒填滿。那些填充在管道內(nèi)的二氧化硅顆粒,本案對(duì)其整體簡(jiǎn)稱二氧化硅顆粒填充物,其功能包括支撐、頂住所述管道的管腔其內(nèi)壁,使得該管道的管腔免于因所述流變而變窄,防止所述管道的管腔其橫截面積縮小甚至閉合,從而長(zhǎng)期維持該管道的基本架構(gòu)不發(fā)生嚴(yán)重的變形。

在該管道內(nèi)眾多二氧化硅顆粒實(shí)體相互隨機(jī)堆置在一起的本案架構(gòu)下,該二氧化硅顆粒填充物的功能,當(dāng)然還包括以其二氧化硅顆粒的親水性的表面,利用各相鄰二氧化硅顆粒相互之間的由親水表面相互靠在一起所形成的曲折綿延的并且其內(nèi)表面具有親水性質(zhì)的空隙,在所述管道內(nèi)部構(gòu)成網(wǎng)絡(luò)形態(tài)的親水的微流道,這個(gè)雖然曲折但卻能夠綿延始終的具有親水性質(zhì)的微流道,那么,在所述管道的管腔內(nèi)部同時(shí)并存的多條的所述微流道其綜合的、集成的、累加的或者說(shuō)是疊加的效果,相當(dāng)于是管徑比較細(xì)小的親水的毛細(xì)管通道;該曲折 綿延的親水的微流道其存在,在相當(dāng)大的程度上抵消了所述原生形態(tài)的pdms基片其表面強(qiáng)烈疏水性質(zhì)所造成的對(duì)于試樣液體的流動(dòng)阻力;換句話說(shuō),因試樣液體其占最大比例的成分是水,試樣液體實(shí)質(zhì)上就是水溶液,因此,該二氧化硅顆粒填充物的存在,能夠大幅度地克服具有疏水性質(zhì)并且表面未修飾的pdms基片其對(duì)水溶液的不相容、排斥和阻擋作用,進(jìn)而大幅度地降低了屬于水溶液性質(zhì)的試樣液流其行進(jìn)通過(guò)管道的阻力。

在本案架構(gòu)下,在所述管道的管腔內(nèi)部,原管道其管腔內(nèi)壁壁面的面積,因所述二氧化硅顆粒填充物的硬性的擠占,管腔內(nèi)壁壁面上依舊還能夠裸露的那部分疏水性質(zhì)的表面其面積已然大幅度地減小,其仍然裸露著的屬于疏水性質(zhì)的那部分表面的面積已經(jīng)遠(yuǎn)遠(yuǎn)小于沒有二氧化硅顆粒填充物存在的情況下的所述管腔內(nèi)壁壁面的疏水性質(zhì)的壁面面積;那么,在本案該架構(gòu)下,該管道其腔管內(nèi),其剩余疏水表面與親水的那部分新增表面,其疊加的、綜合的、總和的、累加的技術(shù)效果,整體上是形成了趨于親水的表面;換句話說(shuō),在所述管道的管腔內(nèi)部,剩余的疏水性質(zhì)的那部分表面其與試樣溶液之間的界面張力,加上親水性質(zhì)的那部分新增表面其與試樣溶液之間的界面張力,其疊加的、綜合的、總和的、累加的技術(shù)效果,是使得所述管道的管腔內(nèi)部其固液界面張力的整合效果趨近于玻璃毛細(xì)管其管腔內(nèi)表面與試樣溶液之間的界面張力。

因此,在所述管道內(nèi)存在有所述二氧化硅顆粒填充物的本案架構(gòu)下,同時(shí)依托本案試樣液流驅(qū)動(dòng)方案,就能夠以較低的超聲波功率來(lái)達(dá)成對(duì)試樣液流的驅(qū)動(dòng),以本案機(jī)制驅(qū)動(dòng)該試樣液流向所述終端流動(dòng)。

另一方面,由于作為基片材質(zhì)的pdms其所具有的所述流變性質(zhì),填充在所述管道內(nèi)的所述二氧化硅顆粒填充物,會(huì)逐漸被不斷地流變變形并向最近鄰空閑空間推進(jìn)的pdms材質(zhì)的管道壁面更嚴(yán)實(shí)地包裹,這過(guò)程最終會(huì)使得那些貼近所述管腔內(nèi)壁壁面的那部分二氧化硅顆粒被卡在原處或嵌在原處,該部分的被卡在原處或嵌在原處的二氧化硅顆粒與其余的相互緊靠在一起地堆置著的二氧化硅顆粒彼此相互嵌頓在一起,由于這一原因,所述二氧化硅顆粒填充物便不會(huì)輕易地在所述管道內(nèi)移動(dòng),其中的二氧化硅顆粒也基本上都被鎖定在原處了,所述微流控芯片的流路架構(gòu)因此能夠得以長(zhǎng)期保持。

本案二氧化硅顆粒填充物其顆粒的粒徑范圍介于10微米與200微米之間,相較于一般有機(jī)物分子、一般生物大分子而言,本案該二氧化硅顆粒填充物其顆粒的粒徑堪稱巨大,由于其巨大的粒徑,并且其極性的表面與強(qiáng)疏水的pdms材質(zhì)的所述管道的內(nèi)表面不能相容或曰相融,那么,該種粒徑巨大的所述二氧化硅顆粒無(wú)法被pdms材質(zhì)的所述管道的內(nèi)表面所吸附,更無(wú)法被pdms材質(zhì)的所述管道的內(nèi)表面所吞沒,該種粒徑巨大的所述二氧化硅顆粒當(dāng)然不會(huì)輕易地完全陷入或完全沉入pdms材質(zhì)其所固有的諸多微小氣孔之中,并且因上文已經(jīng)述及的所述流變的原因,所述二氧化硅顆粒填充物能夠被卡在原處或者說(shuō)是嵌 在原處而不會(huì)輕易移動(dòng)。

在所述管道的管腔內(nèi)部,原管道其管腔內(nèi)壁壁面原本全部是疏水性質(zhì)的表面,如上所述,在本案架構(gòu)下,因所述二氧化硅顆粒填充物的硬性的擠占,管腔內(nèi)壁壁面上依舊還能夠裸露的那部分疏水性質(zhì)的表面其面積已然大幅度地減小,其仍然裸露著的屬于疏水性質(zhì)的那部分表面的面積已經(jīng)遠(yuǎn)遠(yuǎn)小于沒有二氧化硅顆粒填充物存在的情況下的所述管腔內(nèi)壁壁面的疏水性質(zhì)的壁面面積;因著所述流變的原因,緊貼著管腔內(nèi)壁壁面的那些二氧化硅顆粒,逐漸地部分地嵌入或部分地陷入該管腔內(nèi)壁壁面之中,處于該狀態(tài)之中的二氧化硅顆粒其朝向管腔內(nèi)壁壁面的那部分表面與已經(jīng)發(fā)生匹配性變形的該管腔內(nèi)壁壁面緊密貼合,那么,管腔內(nèi)壁壁面中的已經(jīng)發(fā)生所述匹配性變形并與二氧化硅顆粒表面緊密貼合的那部分壁面實(shí)際上已經(jīng)無(wú)法與流經(jīng)管道的試樣溶液接觸,也就是說(shuō),這部分的壁面已經(jīng)不能夠?qū)α鹘?jīng)管道的試樣溶液其中的生物大分子及有機(jī)分子產(chǎn)生吸附作用了。基于上述機(jī)制,那么,因?yàn)樘顫M所述管道的所述二氧化硅顆粒填充物其存在,所述管道其管腔內(nèi)壁壁面的絕大部分已經(jīng)被嚴(yán)密遮蓋,這些已經(jīng)被嚴(yán)密遮蓋的所述壁面已經(jīng)無(wú)法與流經(jīng)所述管道的試樣溶液接觸,僅僅是余下的小部分的未被二氧化硅顆粒其表面所緊密貼合、嚴(yán)密遮蓋的疏水表面可能與試樣溶液接觸,換句話說(shuō),在本案架構(gòu)下,試樣溶液中的生物大分子及有機(jī)分子其與疏水pdms壁面的直接接觸機(jī)會(huì)大幅度地減少,由此,pdms材質(zhì)的管腔內(nèi)壁面其對(duì)生物大分子及有機(jī)分子的吸附干擾以及吞沒干擾被大幅度地降低;如上所述,本案方案有利于排除或減弱所述吸附干擾及吞沒干擾,有利于提升相關(guān)分析測(cè)試數(shù)據(jù)的可靠性。

如上所述,本案該二氧化硅顆粒填充物,其功能實(shí)際上包括類似于針對(duì)pdms材質(zhì)的管道內(nèi)表面進(jìn)行化學(xué)改性的作用,本案其這方面的作用相當(dāng)于是將該pdms材質(zhì)的管道內(nèi)表面由疏水性質(zhì)的表面改變成親水性質(zhì)的表面,但是,與一般的、慣常的pdms表面化學(xué)修飾其親水化學(xué)修飾層保持時(shí)間短、親水效果無(wú)法保持足夠長(zhǎng)時(shí)間的情況不同,本案所述顆粒巨大的二氧化硅顆粒填充物,其因流變而被卡住的顆粒既無(wú)法被輕易移動(dòng),其巨大粒徑的顆粒更無(wú)法被pdms材質(zhì)的管道內(nèi)壁所輕易吞沒,因此,從這方面的其類似于表面化學(xué)改性的技術(shù)效果上看,本案其技術(shù)效果,是形成了恒久的、不可抹除、不可消耗、不被腐蝕、不被吞沒的、不被溶解的親水的表面改性層,它在效果上就是相當(dāng)于一種在pdms基材其相關(guān)表面上構(gòu)建的恒久的親水改性表面層。

本案的技術(shù)方案一攬子地化解了上文述及的與聚二甲基硅氧烷基片其應(yīng)用相關(guān)的一系列技術(shù)難題?;诒景阜桨?,該種十分廉價(jià)的聚二甲基硅氧烷材料便有可能在該微流控芯片制備、生產(chǎn)、應(yīng)用等等領(lǐng)域發(fā)揮更大的作用。

附圖說(shuō)明

圖1是本案該裝置其大略的外觀側(cè)視圖。

圖中,1是聚二甲基硅氧烷材質(zhì)的基片,2是蓋片,3是高頻振蕩電訊號(hào)傳輸電纜,4是微型超聲波換能器,5是該微流控芯片的所述進(jìn)樣端,6是該微流控芯片的所述終端;圖例中的箭頭符號(hào)標(biāo)示該微流控芯片其在實(shí)際運(yùn)行時(shí),受兩端壓力差驅(qū)動(dòng),其試樣液流的流動(dòng)方向。

具體實(shí)施方式

在圖1所展示的本案該實(shí)施例中,該裝置的結(jié)構(gòu)包括微流控芯片,該微流控芯片的結(jié)構(gòu)包括相互貼合裝設(shè)在一起的基片1和蓋片2,該微流控芯片其試樣液流進(jìn)樣端5與該試樣液流流動(dòng)的終端6相互遠(yuǎn)離,該進(jìn)樣端5與該終端6之間的距離介于3厘米與10厘米之間,重點(diǎn)是,該基片1其材質(zhì)是聚二甲基硅氧烷材質(zhì),該基片1其表面是原生形態(tài)的表面,該原生形態(tài)的表面其意思指的是沒有經(jīng)過(guò)任何表面化學(xué)修飾或任何表面化學(xué)改性的該材質(zhì)的原生形態(tài)的表面,該裝置的結(jié)構(gòu)還包括微型超聲波換能器4,以及,高頻振蕩電訊號(hào)傳輸電纜3,該高頻振蕩電訊號(hào)傳輸電纜3的一端與該微型超聲波換能器4連接在一起,該微型超聲波換能器4貼附地裝設(shè)在該微流控芯片的蓋片2或基片1的鄰近所述終端6的位置;該微型超聲波換能器4其主要功能是在微流控芯片實(shí)際進(jìn)樣測(cè)試時(shí),利用所述進(jìn)樣端5以及所述終端6與該微型超聲波換能器4裝設(shè)位置之間的距離差異以及其所感受到的超聲波強(qiáng)度上的差異,誘導(dǎo)形成所述進(jìn)樣端5其界面張力與所述終端6其界面張力之間的差異,該微流控芯片該兩端5、6之間的界面張力差異會(huì)在該微流控芯片的該兩端5、6之間形成壓力差異,該壓力差異會(huì)驅(qū)動(dòng)試樣溶液向所述終端6方向流動(dòng);柔軟并具彈性的該聚二甲基硅氧烷材質(zhì)的基片1其功能包括以其對(duì)超聲波強(qiáng)烈吸收的性質(zhì),對(duì)超聲波進(jìn)行強(qiáng)烈吸收,并藉此在該微流控芯片該終端6到該進(jìn)樣端5之間的有限的短距離之內(nèi)實(shí)現(xiàn)超聲波強(qiáng)度的快速遞減;以及,許多的二氧化硅顆粒,該許多的二氧化硅顆粒填充在該微流控芯片的管道內(nèi),所述管道其管腔被該許多的二氧化硅顆粒所填滿,該二氧化硅顆粒其粒徑范圍介于10微米與200微米之間,該二氧化硅顆粒是二氧化硅晶態(tài)顆粒、二氧化硅玻璃顆粒或二氧化硅成分其所占重量百分比在80%以上的無(wú)機(jī)玻璃顆粒。

圖例中的箭頭符號(hào)標(biāo)示該微流控芯片其在實(shí)際運(yùn)行時(shí),受兩端壓力差驅(qū)動(dòng),其試樣液流的流動(dòng)方向。

圖1沒有繪出所述高頻振蕩電訊號(hào)發(fā)生器等附屬件。

所涉微型超聲波換能器4市場(chǎng)有售;也可以向超聲波換能器廠家定制。

所涉高頻振蕩電訊號(hào)傳輸電纜3市場(chǎng)有售;也可以向超聲波換能器廠家定制。

所涉高頻振蕩電訊號(hào)發(fā)生器市場(chǎng)有接近需要的產(chǎn)品可購(gòu);也可以向相關(guān)廠家定制。

當(dāng)前第1頁(yè)1 2 
網(wǎng)友詢問(wèn)留言 已有0條留言
  • 還沒有人留言評(píng)論。精彩留言會(huì)獲得點(diǎn)贊!
1
嘉黎县| 海城市| 民勤县| 五台县| 霸州市| 西乌珠穆沁旗| 棋牌| 玉门市| 阿荣旗| 高青县| 六枝特区| 镇巴县| 敦化市| 昌都县| 镇远县| 抚远县| 朝阳市| 安图县| 临邑县| 浙江省| 家居| 南投市| 吉木乃县| 沐川县| 高唐县| 临泽县| 云梦县| 兴海县| 武邑县| 宁阳县| 汉沽区| 铅山县| 伊宁市| 金坛市| 东辽县| 承德县| 收藏| 石城县| 丹东市| 丰顺县| 林甸县|