本發(fā)明涉及能源、電力、環(huán)境及技術經(jīng)濟學領域,具體涉及一種成本效益最優(yōu)的火電機組減排方案定制方法和系統(tǒng)。
背景技術:
近年來,我國東中部地區(qū)頻繁出現(xiàn)嚴重的霧霾污染,給人民生產(chǎn)生活和身心健康帶來嚴重影響。研究表明,煤炭燃燒產(chǎn)生的煙塵、二氧化硫、氮氧化物是形成霧霾的主要來源之一,燃煤發(fā)電作為我國煤炭利用的主要形式,雖然除塵、脫硫、脫硝等技術已在電力行業(yè)大規(guī)模推廣,但由于電煤消費總量大,大氣污染物排放總量也長期居于高位,隨著減排技術進步和排放標準的提高,未來仍有一定的減排空間。
傳統(tǒng)的火電行業(yè)減排主要針對通過相應技術手段實現(xiàn),且大多集中在對單一污染物減排的技術分析上;即使對于綜合減排方案,也主要從實現(xiàn)污染物排放績效達標的角度考慮,沒有關注過減排成本的影響,造成了沒必要的經(jīng)濟損失。
有鑒于此,急需提供一種綜合成本效益最優(yōu)的火電機組減排方案定制方法和系統(tǒng)。
技術實現(xiàn)要素:
為了解決上述問題,本發(fā)明提供了一種成本效益最優(yōu)的火電機組減排方案定制方法,包括以下步驟:
確定基準年和目標年;獲取基準年機組結構與各類污染物排放值;確定目標年國家制度因素、減排技術和機組結構變化情況,確定目標年各污染物排放水平及減排空間;確定綜合效益的目標函數(shù),以目標年改造裝機約束與減排量約束為約束條件,建立利用基于線性規(guī)劃的成本效益減排優(yōu)化模型;根據(jù)目標年機組結構及減排技術進行優(yōu)化選擇,確定成本效益最優(yōu)的火電機組減排方案;其中,
機組結構包括火電機組組合、年發(fā)電小時數(shù)和煤質(zhì)種類;
污染物排放水平:為某一確定污染物在某種確定邊界條件下的排放量;確定邊界條件指火電機組結構、相應減排技術與排放標準指定條件;
減排空間:減排空間為一相對變量,由目標年與基準年相比的國家制度因素、減排技術與機組結構參數(shù)的變化決定。
在上述方法中,所述優(yōu)化模型具體如下:
(1)目標函數(shù):maxz=wtx;
式中,z是總綜合效益;x是火電機組的改造裝機量;w為火電機組改造后能獲取的綜合收益,即改造收益與改造成本的差值;
改造收益=減排收益+隱形收益;其中,減排收益=排污費*減排量,隱形收益=未來高環(huán)保費用及人類健康成本*減排量;
改造成本=改造投資成本+改造運維成本;其中,改造投資成本以最長壽命期作為投資回收期折算,改造運維成本以壽命期內(nèi)平均值為準;
(2)約束條件:改造裝機約束與減排量約束,其中,
改造裝機約束:
0≤xi,j,k
減排量約束:
其中,i,j,k分別表示污染物種類、減排技術種類,機組類型,xi,j,k表示對應某一類機組(k),為了減少某種污染物(i)所采用的技術(j)的改造量;installk為某一類機組目標年的總裝機;ti,j,k為對應不同裝機容量機組應對某周污染物的減排技術績效,emissioni為某類污染物目標年到基準年的減排量。
在上述方法中,所述根據(jù)機組結構及減排技術結合所述優(yōu)化模型確定成本效益最優(yōu)的火電機組減排方案具體步驟如下:
步驟一:根據(jù)線性規(guī)劃問題的標準型,確定初始可行基矩陣b0和可行基變量組
并求出初始目標函數(shù)值為
步驟二:計算非基變量組xn的檢驗數(shù)向量
步驟三:根據(jù)
步驟四:根據(jù)θ原則,求出
其對應的基變量是xl,確定xl為離基變量;若xk為入基變量,而xl為離基變量,則設alk是新一輪變換的樞元,并獲得一組新的可行基變量
步驟五:計算新的可行基矩陣b1的逆矩陣
本發(fā)明還提供了一種成本效益最優(yōu)的火電機組減排方案定制系統(tǒng),包括
參數(shù)獲取模塊:用于獲取分析成本效益有關的參數(shù);
參數(shù)計算模塊:用于根據(jù)參數(shù)獲取模塊獲取到的基準年與目標年的各參數(shù),計算分析成本效益有關的參數(shù);
建模模塊:用于根據(jù)所述參數(shù)獲取模塊與所述參數(shù)計算模塊獲得相應的參數(shù),以目標年改造裝機約束與減排量約束為約束條件,建立優(yōu)化模型;
方案確定模塊:用于根據(jù)目標年機組結構及減排技術進行優(yōu)化選擇,求解所述目標函數(shù),確定成本效益最優(yōu)的火電機組減排方案。
在上述方案中,所述參數(shù)包括:基準年、目標年,排污費、環(huán)保費用及人類健康成本、改造投資成本、改造運維成本與各污染物排放績效,基準年機組結構、各類污染物排放值與減排技術,目標年機組結構、各類污染物排放值與減排技術;
機組結構包括火電機組組合、年發(fā)電小時數(shù)和煤質(zhì)種類,不同裝機量的火電機組組合減排效率也不同;
各類污染物包括碳粉塵、二氧化碳、二氧化硫及氮氧化物等。
在上述方案中,所述參數(shù)計算模塊具體計算如下:
計算獲得目標年相比基準年各污染物排放的減排量,目標年各污染物排放水平及減排空間;
污染物排放水平為發(fā)電量與排放績效的乘積,發(fā)電量為機組裝機量與發(fā)電小時數(shù)的成積,機組裝機量即為一臺或多臺某種類型的機組組成的裝機;
減排空間:減排空間為一相對變量,由目標年與基準年相比的國家制度因素、減排技術與機組結構參數(shù)的變化決定;
計算火電機組的改造裝機量;
計算火電機組改造后能獲取的綜合收益,即改造收益與改造成本的差值;
改造收益=減排收益+隱形收益;其中,減排收益=排污費*減排量,隱形收益=環(huán)保費用及人類健康成本*減排量;
改造成本=改造投資成本+改造運維成本;其中,改造投資成本以最長壽命期作為投資回收期折算,改造運維成本以壽命期內(nèi)平均值為準。
在上述方案中,所述優(yōu)化模型具體如下:
(1)目標函數(shù):maxz=wtx;
式中,z是總綜合效益;x是火電機組的改造裝機量;w為火電機組改造后能獲取的綜合收益,即改造收益與改造成本的差值;
改造收益=減排收益+隱形收益;其中,減排收益=排污費*減排量,隱形收益=環(huán)保費用及人類健康成本*減排量;
改造成本=改造投資成本+改造運維成本;其中,改造投資成本以最長壽命期作為投資回收期折算,改造運維成本以壽命期內(nèi)平均值為準;
(2)約束條件:改造裝機約束與減排量約束,其中,
改造裝機約束:
0≤xi,j,k
減排量約束:
其中,i表示污染物種類,j表示減排技術種類,k表示機組結構,xi,j,k表示對應某一類機組(k),為了減少某種污染物(i)所采用的技術(j)的改造裝機量;installk為某一類機組目標年的總裝機;ti,j,k為對應不同裝機容量機組應對某污染物的排放績效,emissioni為某類污染物目標年到基準年的減排量。
在上述方案中,所述方案確定模塊具體實施以下步驟:
步驟一:根據(jù)線性規(guī)劃問題的標準型,確定初始可行基矩陣b0和可行基變量組
并求出初始目標函數(shù)值為
步驟二:計算非基變量組xn的檢驗數(shù)向量
步驟三:根據(jù)
步驟四:根據(jù)θ原則,求出
其對應的基變量是xl,確定xl為離基變量;若xk為入基變量,而xl為離基變量,則設alk是新一輪變換的樞元,并獲得一組新的可行基變量
步驟五:計算新的可行基矩陣b1的逆矩陣
本發(fā)明在滿足環(huán)保排放要求的前提下,對每一項減排措施從效益和成本兩方面考慮,從經(jīng)濟上進行煙氣除塵脫硫脫銷技術優(yōu)化,對技術方案進行技術經(jīng)濟計算與評價,最大程度的降低工程造價。全面考慮各種煙氣除塵脫硫脫硝技術的設計參數(shù)及對電廠現(xiàn)有設備運行的影響,通過計算投資成本、年運行成本、污染物排污費等經(jīng)濟指標進行綜合比較,最終達成綜合成本效益最優(yōu)的減排方案。
附圖說明
圖1為本發(fā)明提供的實施例一的流程圖;
圖2為本發(fā)明提供的實施例一的結構示意圖。
具體實施方式
本發(fā)明在滿足環(huán)保排放要求的前提下,對每一項減排措施從效益和成本兩方面考慮,從經(jīng)濟上進行煙氣除塵脫硫脫銷技術優(yōu)化,對技術方案進行技術經(jīng)濟計算與評價,最大程度的降低工程造價。全面考慮各種煙氣除塵脫硫脫硝技術的設計參數(shù)及對電廠現(xiàn)有設備運行的影響,通過計算投資成本、年運行成本、污染物排污費等經(jīng)濟指標進行綜合比較,最終達成綜合成本效益最優(yōu)的減排方案。下面結合具體實施例和說明書附圖對本發(fā)明做出詳細的說明。
實施例一。
一種成本效益最優(yōu)的火電機組減排方案定制方法,如圖1所示,包括以下步驟:
s1、確定基準年和目標年;其中,基準年可為本年度,目標年可為國家規(guī)劃的節(jié)能減排目標年。
s2、獲取基準年相關變量參數(shù),包括機組結構與各類污染物排放值等信息;其中,機組結構包括火電機組組合、年發(fā)電小時數(shù)和煤質(zhì)種類,不同裝機量的火電機組組合減排效率也不同;各類污染物包括碳粉塵、二氧化碳、二氧化硫及氮氧化物等。
s3、確定目標年國家制度因素、減排技術和機組結構變化情況,確定目標年各污染物排放水平及減排空間。其中,
國家制度因素:根據(jù)國家制定的減排規(guī)定變化,不同目標年國家對各污染物排放限值要求也不同。
減排技術:與各發(fā)電設備及技術相關,發(fā)電設備及技術越先進,減排力度也會大。減排技術可為多種現(xiàn)在市場常用的先進技術,如超低排放技術(循化流化床發(fā)電技術、整體煤氣化聯(lián)合循環(huán)發(fā)電技術等)、碳減排技術(用煙煤替代原煤等);先進的發(fā)電設備如超臨界發(fā)電技術裝備、大容量熱電聯(lián)產(chǎn)等。
污染物排放水平:污染物排放水平為某一確定污染物(如二氧化硫)在某種確定邊界條件下的排放量。確定邊界條件指火電機組結構、相應減排技術與排放標準等指定條件。即污染物排放水平=發(fā)電量*排放績效,發(fā)電量為裝機量與發(fā)電小時數(shù)的成積,裝機量即為一臺或多臺某種類型的機組組成的裝機;例如,5臺30萬千瓦的發(fā)電機組一共為150萬千瓦。
減排空間:減排空間為一相對變量,由目標年與基準年相比的國家制度因素、減排技術與機組結構參數(shù)的變化決定;例如,相比于基準年,目標年各污染物排放限值下降,使用減排技術的改進,或機組結構中火電機組組合的改進、年發(fā)電小時數(shù)減少或煤質(zhì)種類的變化,都影響著著減排空間值的大小。
對于減排空間下面舉例說明:
基準年2015年;目標年2020年,排放物為煙塵。
以某一確定地區(qū)為例,2015年火電煙塵排放量100萬噸,維持現(xiàn)有減排技術a到2020年排放量200萬噸(增長原因是隨著電力需求增長火電發(fā)電量增長);但按照國家有關規(guī)定,確定2020年煙塵排放量不得高于150萬噸(國家給定的是濃度,需要考慮不同類型機組典型煙氣量指標從而將濃度轉換得出排放量)。
那么減排空間下限:200-150=50萬噸,即至少減50萬噸才能達到國家標準。
若采用了最先進的減排技術,則該地區(qū)2020年煙塵排放水平可計算得到(發(fā)電量*排放績效),如90萬噸,則減排空間上限為90萬噸。
這樣減排空間為50-90萬噸。
s4、確定綜合效益的目標函數(shù),以目標年改造裝機約束與減排量約束為約束條件,從源頭治理和末端治理兩個方面同時進行分析,建立利用基于線性規(guī)劃的成本效益減排優(yōu)化模型;優(yōu)化模型具體如下:
(1)目標函數(shù):maxz=wtx;
式中,z是總綜合效益;x是不同機組容量的火電機組所選擇對應的減排技術所進行的改造裝機量;w為不同減排技術對應不同容量火電機組改造所需要的綜合收益,即改造收益(btotal)與改造成本(ctotal)的差值。
改造收益=減排收益+隱形收益;其中,減排收益=排污費*減排量,隱形收益=環(huán)保費用及人類健康成本*減排量。
改造成本=改造投資成本+改造運維成本;其中,改造投資成本以最長壽命期作為投資回收期折算,改造運維成本以壽命期內(nèi)平均值為準。
(2)約束條件:包括改造裝機約束與減排量約束,其中,
改造裝機約束:
0≤xi,j,k
減排量約束:
其中,i表示污染物種類,j表示減排技術種類,k表示機組結構,xi,j,k表示對應某一類機組(k),為了減少某種污染物(i)所采用的技術(j)的改造裝機量;installk為某一類機組目標年的總裝機。ti,j,k為對應不同裝機容量機組應對某污染物的排放績效,emissioni為某類污染物目標年到基準年的減排量。
因此滿足上述約束條件的解x為解決該線性規(guī)劃問題的可行解,所有可行解的集合為可行域;滿足maxz=wtx的可行解,為該線性規(guī)劃問題的最優(yōu)解。
s5、根據(jù)目標年機組結構及減排技術進行優(yōu)化選擇,確定成本效益最優(yōu)的火電機組減排方案。
本實施例通過單純形法求解上述線性規(guī)劃問題,該方法的基本思想是:先找出一個基本可行解,對它進行鑒別,看是否是最優(yōu)解;若不是,則按照一定法則轉換到另一改進的基本可行解,再鑒別;若仍不是,則再轉換,按此重復進行。因基本可行解的個數(shù)有限,故經(jīng)有限次轉換必能得出問題的最優(yōu)解。如果問題無最優(yōu)解也可用此法判別。因此根據(jù)上述機組結構及減排技術結合優(yōu)化模型確定成本效益最優(yōu)的火電機組減排方案具體步驟如下:
步驟一:根據(jù)線性規(guī)劃問題的標準型,確定初始可行基矩陣b0和可行基變量組
并求出初始目標函數(shù)值為
步驟二:計算非基變量組xn的檢驗數(shù)向量
步驟三:根據(jù)
步驟四:根據(jù)θ原則,求出
其對應的基變量是xl,確定xl為離基變量。若xk為入基變量,而xl為離基變量,則設alk是新一輪變換的樞元,并獲得一組新的可行基變量
步驟五:計算新的可行基矩陣b1的逆矩陣
下面用過具體例子來說明本發(fā)明:
利用火電機組減排潛力優(yōu)化模型,針對目標年不同結構情景,分別測算全國范圍內(nèi)最優(yōu)火電機組技術減排方案如下:
表5-2目標年基準情景減排方案
具體超低排放改造技術及達到減排的效果如下:
0.6-10萬千瓦機組,主要進行脫硫增效環(huán)進行脫硫改造,減排二氧化硫11萬噸;通過鍋爐低氮燃燒技術進行脫硝改造,減排氮氧化物12萬噸;通過濕式電除塵進行除塵改造,共除塵2萬噸;綜合上述超低排放技術改造,減排pm2.5為萬噸。
10-20萬千瓦機組,主要進行脫硫增效環(huán)進行脫硫改造,減排二氧化硫10萬噸;通過鍋爐低氮燃燒技術進行脫硝改造,減排氮氧化物11萬噸;通過濕式電除塵進行除塵改造,共除塵2萬噸;綜合上述超低排放技術改造,減排pm2.5為7萬噸。
20-30萬千瓦機組,主要進行分區(qū)控制進行脫硫改造,減排二氧化硫8萬噸;通過鍋爐低氮燃燒技術進行脫硝改造,減排氮氧化物9萬噸;通過濕式電除塵進行除塵改造,共除塵1萬噸;綜合上述超低排放技術改造,減排pm2.56萬噸。
30-60萬千瓦機組,主要進行分區(qū)控制進行脫硫改造,減排二氧化硫53萬噸;通過鍋爐低氮燃燒技術進行脫硝改造,減排氮氧化物60萬噸;通過濕式電除塵進行除塵改造,共除塵9萬噸;綜合上述超低排放技術改造,減排pm2.5為40萬噸。
60-100萬千瓦機組,主要進行均流提效板進行脫硫改造,減排二氧化硫66萬噸;通過鍋爐低氮燃燒技術進行脫硝改造,減排氮氧化物74萬噸;通過低低溫電除塵進行除塵改造,共除塵11萬噸;綜合上述超低排放技術改造,減排pm2.5為50萬噸。
100萬千瓦以上機組,主要進行均流提效板進行脫硫改造,減排二氧化硫21萬噸;通過鍋爐低氮燃燒技術進行脫硝改造,減排氮氧化物24萬噸;通過低低溫電除塵進行除塵改造,共除塵4萬噸;綜合上述超低排放技術改造,減排pm2.5為16萬噸。
終上,在目標年基準情景,各重要污染物排放濃度均已達到國家《全面實施燃煤電廠超低排放和節(jié)能改造工作方案》文件中的相關要求,通過超低排放技術改造,共減排煙塵29萬噸、二氧化硫168萬噸、氮氧化物190萬噸、pm2.5為128萬噸。
本實施例主要通過以下幾個原則來分析并確定成本效益最優(yōu)的火電機組減排方案,具體如下:
(1)經(jīng)濟分析與評價的原則
經(jīng)濟分析與評價的目的是追求投資、運行維護等投入費用最小化或者經(jīng)濟效益最大化,應對火電廠煙氣除塵脫硫脫硝設備的技術經(jīng)濟進行綜合評估,作為設備投資決策的重要依據(jù)。科技轉化為生產(chǎn)力的有效途徑是通過設計來實現(xiàn)的,也是技術研究成敗的關鍵,在工程設計過程中要充分考慮技術與經(jīng)濟的有效結合。
因此,在滿足環(huán)保排放要求的前提下,需要從經(jīng)濟上進行煙氣除塵脫硫脫銷技術優(yōu)化,對技術方案進行技術經(jīng)濟計算與評價,最大程度的降低工程造價。全面考慮各種煙氣除塵脫硫脫硝技術的設計參數(shù)及對電廠現(xiàn)有設備運行的影響,通過計算投資成本、年運行成本、污染物排污費等經(jīng)濟指標進行綜合比較。
(2)費用最小化原則
燃煤電廠煙氣除塵脫硫脫硝應以提高環(huán)境質(zhì)量、維護生態(tài)效益、提高人民生活水平質(zhì)量、維持經(jīng)濟和社會的可持續(xù)發(fā)展為基本任務及功能目標,在滿足功能目標的前提下追求項目服務期費用最小原則。項目服務期費用包括了與項目有關的一切費用,如項目前期費用:設備制造、采購、建設、安裝及試運行等建設期費用,生產(chǎn)期運行維護費用以及系統(tǒng)設備服務期結束時的拆除費用等。
在本實施例中當除塵脫硫脫硝設計費、設備購置費、安裝費、土地征用費以及設備改造費等直接成本及由于減少污染物排放而少繳納的排污費不變等情況下,這些環(huán)保裝置的運行維護費用、運行和監(jiān)測的人力費用等間接成本費用最小時,企業(yè)所得到的收益最大。
(3)經(jīng)濟效益最大化原則
效益最大化是指系統(tǒng)設備服務期內(nèi)的所得到效益最大化,當一個工程技術的經(jīng)濟效益較容易定量計算時,項目經(jīng)濟評價所追求的最大目標是所得到效益能實現(xiàn)最大化。在本實施例中當除塵設計費、設備購置費、安裝費等直接成本及脫銷裝置的運行維護費用、運行和監(jiān)測的人力費用等間接成本不變時,減低繳納排污費,企業(yè)所得到的收益最大。
實施例二。
一種成本效益最優(yōu)的火電機組減排方案定制系統(tǒng),如圖2所示,包括參數(shù)獲取模塊101、參數(shù)計算模塊102、建模模塊103與方案確定模塊104。
參數(shù)獲取模塊101:用于獲取分析成本效益有關的參數(shù);包括以下參數(shù):
基準年,目標年,排污費、環(huán)保費用及人類健康成本、改造投資成本、改造運維成本與各污染物排放績效,基準年機組結構、各類污染物排放值與減排技術;目標年機組結構、各類污染物排放值與減排技術。其中,
機組結構包括火電機組組合、年發(fā)電小時數(shù)和煤質(zhì)種類,不同裝機量的火電機組組合減排效率也不同。
各類污染物包括碳粉塵、二氧化碳、二氧化硫及氮氧化物等。
參數(shù)計算模塊102:用于根據(jù)參數(shù)獲取模塊獲取到的基準年與目標年的各參數(shù),計算分析成本效益有關的參數(shù)。具體如下:
計算獲得目標年相比基準年各污染物排放的減排量,目標年各污染物排放水平及減排空間;
污染物排放水平:污染物排放水平為某一確定污染物(如二氧化硫)在某種確定邊界條件下的排放量。確定邊界條件指火電機組結構、相應減排技術與排放標準等指定條件。即污染物排放水平為發(fā)電量與排放績效的乘積,發(fā)電量為機組裝機量與發(fā)電小時數(shù)的成積,機組裝機量即為一臺或多臺某種類型的機組組成的裝機。
減排空間:減排空間為一相對變量,由目標年與基準年相比的國家制度因素、減排技術與機組結構參數(shù)的變化決定;
計算火電機組的改造裝機量;例如,將基準年5臺30萬千瓦的機組改造為3臺30萬千瓦的機組,即改造裝機量為60萬千瓦。
計算火電機組改造后能獲取的綜合收益,即改造收益(btotal)與改造成本(ctotal)的差值;
改造收益=減排收益+隱形收益;其中,減排收益=排污費*減排量,隱形收益=環(huán)保費用及人類健康成本*減排量。
改造成本=改造投資成本+改造運維成本;其中,改造投資成本以最長壽命期作為投資回收期折算,改造運維成本以壽命期內(nèi)平均值為準。
建模模塊103:用于根據(jù)參數(shù)獲取模塊與參數(shù)計算模塊獲得相應的參數(shù),以目標年改造裝機約束與減排量約束為約束條件,建立優(yōu)化模型。
本實施例通過從源頭治理和末端治理兩個方面同時進行分析,建立利用基于線性規(guī)劃的成本效益減排優(yōu)化模型,具體通過gams(generalalgebraicmodelingsystem,通用代數(shù)建模系統(tǒng))系統(tǒng)建模;優(yōu)化模型具體如下:
(1)目標函數(shù):maxz=wtx;
式中,z是總綜合效益;x是火電機組的改造裝機量;w為火電機組改造后能獲取的綜合收益,即改造收益與改造成本的差值;改造收益=減排收益+隱形收益;其中,
減排收益=排污費*減排量,隱形收益=環(huán)保費用及人類健康成本*減排量。
改造成本=改造投資成本+改造運維成本;其中,改造投資成本以最長壽命期作為投資回收期折算,改造運維成本以壽命期內(nèi)平均值為準。
(2)約束條件:包括改造裝機約束與減排量約束,其中,
改造裝機約束:
0≤xi,j,k
減排量約束:
其中,i表示污染物種類,j表示減排技術種類,k表示機組結構,xi,j,k表示對應某一類機組(k),為了減少某種污染物(i)所采用的技術(j)的改造裝機量;installk為某一類機組目標年的總裝機。ti,j,k為對應不同裝機容量機組應對某污染物的排放績效,emissioni為某類污染物目標年到基準年的減排量。
因此滿足上述約束條件的解x為解決該線性規(guī)劃問題的可行解,所有可行解的集合為可行域;滿足maxz=wtx的可行解,為該線性規(guī)劃問題的最優(yōu)解。
方案確定模塊104:用于根據(jù)目標年機組結構及減排技術進行優(yōu)化選擇,求解所述目標函數(shù),確定成本效益最優(yōu)的火電機組減排方案。
本實施例通過單純形法求解上述線性規(guī)劃問題,具體通過cplex優(yōu)化軟件求解,根據(jù)上述機組結構及減排技術結合優(yōu)化模型確定成本效益最優(yōu)的火電機組減排方案具體步驟如下:
步驟一:根據(jù)線性規(guī)劃問題的標準型,確定初始可行基矩陣b0和可行基變量組
并求出初始目標函數(shù)值為
步驟二:計算非基變量組xn的檢驗數(shù)向量
步驟三:根據(jù)
步驟四:根據(jù)θ原則,求出
其對應的基變量是xl,確定xl為離基變量。若xk為入基變量,而xl為離基變量,則設alk是新一輪變換的樞元,并獲得一組新的可行基變量
步驟五:計算新的可行基矩陣b1的逆矩陣
本發(fā)明不局限于上述最佳實施方式,任何人應該得知在本發(fā)明的啟示下作出的結構變化,凡是與本發(fā)明具有相同或相近的技術方案,均落入本發(fā)明的保護范圍之內(nèi)。