本發(fā)明屬于安全系統(tǒng)工程技術(shù)領(lǐng)域,具體地說,尤其涉及一種復(fù)雜系統(tǒng)的能控性對相繼故障的魯棒性建模方法。
背景技術(shù):
隨著計算機和網(wǎng)絡(luò)技術(shù)的進步,現(xiàn)代基礎(chǔ)設(shè)施系統(tǒng)正朝著綜合化、網(wǎng)絡(luò)化的方向發(fā)展。雖然已經(jīng)有研究來對復(fù)雜系統(tǒng)的拓撲結(jié)構(gòu)和動態(tài)過程進行深入探討,但是由于信息流、能量流、物質(zhì)流的傳輸導(dǎo)致出現(xiàn)了網(wǎng)絡(luò)結(jié)構(gòu)間相互耦合、網(wǎng)絡(luò)組件之間相互依賴、網(wǎng)絡(luò)故障相互傳播等復(fù)雜特性問題。這就使得復(fù)雜系統(tǒng)中仍有許多問題有待解決,而相繼故障就是其中廣泛存在的一個問題。
相繼故障廣泛存在于基礎(chǔ)設(shè)施系統(tǒng)中,比如電力系統(tǒng)、互聯(lián)網(wǎng)、交通運輸系統(tǒng)等中。系統(tǒng)中一個組件的失效會傳播至相鄰組件,甚至引起系統(tǒng)的大規(guī)模相繼故障,比如電力系統(tǒng)中某個變電站的失效會引起大規(guī)模停電事故,互聯(lián)網(wǎng)中的關(guān)鍵服務(wù)器遭到攻擊會引起整個互聯(lián)網(wǎng)的癱瘓等。
相繼故障也稱為級聯(lián)失效,指的是網(wǎng)絡(luò)中一個或少數(shù)節(jié)點或邊發(fā)生故障,通過節(jié)點或邊之間的耦合關(guān)系引起其它節(jié)點或邊發(fā)生故障,從而產(chǎn)生連鎖效應(yīng),最終導(dǎo)致網(wǎng)絡(luò)相當(dāng)一部分甚至全部崩潰。研究表明具有異質(zhì)特性的復(fù)雜系統(tǒng)更容易受到相繼故障的影響。相繼故障往往造成大量組件失效,改變系統(tǒng)的拓撲結(jié)構(gòu),從而造成復(fù)雜系統(tǒng)的能控性受損。
現(xiàn)有技術(shù)中,通常采用能夠保證系統(tǒng)完全能控的最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目來衡量復(fù)雜系統(tǒng)的能控性。最小驅(qū)動節(jié)點集指的是使得系統(tǒng)完全能控的驅(qū)動節(jié)點集中節(jié)點數(shù)目最小的集合,反應(yīng)了系統(tǒng)實現(xiàn)完全能控的最少的驅(qū)動節(jié)點的數(shù)目。最小驅(qū)動節(jié)點集的計算已有成熟的算法,如結(jié)構(gòu)能控性算法和精確能控性算法,因為結(jié)構(gòu)能控性算法有著較高的計算效率和較廣的使用范圍。
復(fù)雜系統(tǒng)中各組件間的信息、能力、物質(zhì)交換需要一個途徑,如電纜、光纜、道路等。這些設(shè)施的建設(shè)往往需要大額投資成本,每個途徑都有限定的容量大小?,F(xiàn)階段大多數(shù)系統(tǒng)途徑的容量往往是基于局部信息考慮并設(shè)置的,如簡單的設(shè)置某條邊容量是其負載的線性倍數(shù),并未考慮到網(wǎng)絡(luò)的整體,這樣往往會導(dǎo)致容量的資源浪費,增加了系統(tǒng)投資成本。
技術(shù)實現(xiàn)要素:
本發(fā)明提供了一種復(fù)雜系統(tǒng)的能控性對相繼故障的魯棒性建模方法,用以使系統(tǒng)在較小的投資成本下實現(xiàn)其能控性對相繼故障的免疫。
根據(jù)本發(fā)明的一個實施例,提供了一種復(fù)雜系統(tǒng)的能控性對相繼故障的魯棒性建模方法,包括以下步驟:
將系統(tǒng)抽象為有向網(wǎng)絡(luò)并獲取所述有向網(wǎng)絡(luò)的網(wǎng)絡(luò)拓撲性質(zhì)、初始負載和初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目;
建立所述系統(tǒng)的非線性負載容量模型,并根據(jù)所述網(wǎng)絡(luò)拓撲性質(zhì)確定所述非線性負載容量模型中第一模型參數(shù)的取值范圍;
以預(yù)定取值方式從所述取值范圍內(nèi)抽取若干第一模型參數(shù)值,并根據(jù)預(yù)設(shè)網(wǎng)絡(luò)成本步長和所述初始負載,計算所述有向網(wǎng)絡(luò)對應(yīng)各第一模型參數(shù)值的容量;
計算所述有向網(wǎng)絡(luò)在相繼故障后最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目,并結(jié)合初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目計算系統(tǒng)能控性的魯棒性指數(shù);
根據(jù)初始負載和對應(yīng)各第一模型參數(shù)值的容量以及系統(tǒng)能控性的魯棒性指數(shù),確定所述第一模型參數(shù)值,進而確定所述非線性負載容量模型。
根據(jù)本發(fā)明的一個實施例,所述非線性負載容量模型表示為:
其中,hij表示所述有向網(wǎng)絡(luò)的邊aij的容量,lij(0)表示所述有向網(wǎng)絡(luò)的邊aij的初始負載,α表示用于調(diào)整容量大小的第一模型參數(shù),β表示用于調(diào)整容量大小的第二模型參數(shù),i、j表示有向網(wǎng)絡(luò)中的節(jié)點,i,j=1,2,...,n,n為網(wǎng)絡(luò)的節(jié)點數(shù)。
根據(jù)本發(fā)明的一個實施例,將系統(tǒng)抽象為有向網(wǎng)絡(luò)并獲取所述有向網(wǎng)絡(luò)的網(wǎng)絡(luò)拓撲性質(zhì)、初始負載和初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目進一步包括以下步驟:
將系統(tǒng)抽象為有向網(wǎng)絡(luò);
根據(jù)所述有向網(wǎng)絡(luò)的各節(jié)點間的連接狀況生成第一鄰接矩陣,其中,所述第一鄰接矩陣中的元素為0表示兩節(jié)點之間無連接,元素為1表示兩節(jié)點之間有連接;
根據(jù)所述第一鄰接矩陣獲取所述有向網(wǎng)絡(luò)的網(wǎng)絡(luò)拓撲性質(zhì)、初始負載和初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目,其中,所述網(wǎng)絡(luò)拓撲性質(zhì)包括度分布冪律指數(shù)和出-入度相關(guān)性。
根據(jù)本發(fā)明的一個實施例,根據(jù)所述網(wǎng)絡(luò)拓撲性質(zhì)確定所述非線性負載容量模型中的第一模型參數(shù)的取值范圍進一步包括:
如所述有向網(wǎng)絡(luò)的度分布冪律指數(shù)大于2.2,并且出-入度相關(guān)性大于-0.2,則設(shè)置所述第一模型參數(shù)為1,否則設(shè)置所述第一模型參數(shù)的取值范圍為[0.7,1)。
根據(jù)本發(fā)明的一個實施例,計算所述有向網(wǎng)絡(luò)對應(yīng)各第一模型參數(shù)值的容量進一步包括:
根據(jù)所述預(yù)設(shè)網(wǎng)絡(luò)成本步長、所述第一模型參數(shù)值和初始負載,計算對應(yīng)第一模型參數(shù)的非線性負載容量模型的第二模型參數(shù)步長;
以所述第二模型參數(shù)步長為增量逐步增加所述第二模型參數(shù),并采用所述非線性負載容量模型計算第一模型參數(shù)及對應(yīng)第二模型參數(shù)步長條件下的所述有向網(wǎng)絡(luò)的容量。
根據(jù)本發(fā)明的一個實施例,計算所述有向網(wǎng)絡(luò)在相繼故障后最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目,并結(jié)合初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目計算系統(tǒng)能控性的魯棒性指數(shù)進一步包括以下步驟:
根據(jù)所述有向網(wǎng)絡(luò)的初始負載,確定并移除所述有向網(wǎng)絡(luò)負載最高的邊,以使所述有向網(wǎng)絡(luò)的負載情況發(fā)生變化;
負載變化后,移除所述有向網(wǎng)絡(luò)中負載超過其容量的邊,重新計算當(dāng)前情況下有向網(wǎng)絡(luò)的負載,并進一步移除負載超過容量的邊,重復(fù)該過程,直至網(wǎng)絡(luò)中所有邊的負載不超過其容量,得到有向網(wǎng)絡(luò)的第二鄰接矩陣;
根據(jù)所述第二鄰接矩陣計算相繼故障停止后所述有向網(wǎng)絡(luò)的最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目;
取相繼故障發(fā)生前初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目與相繼故障停止后所述有向網(wǎng)絡(luò)的最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目的比值,并將所述比值作為系統(tǒng)能控性的魯棒性指數(shù)。
根據(jù)本發(fā)明的一個實施例,根據(jù)初始負載和對應(yīng)各第一模型參數(shù)值的容量以及系統(tǒng)能控性的魯棒性指數(shù),確定所述第一模型參數(shù)值,進而確定所述非線性負載容量模型進一步包括:
利用所述初始負載和對應(yīng)各第一模型參數(shù)值的容量,采用網(wǎng)絡(luò)成本定義計算所述有向網(wǎng)絡(luò)對應(yīng)第一模型參數(shù)值的網(wǎng)絡(luò)成本;
根據(jù)對應(yīng)第一模型參數(shù)值的網(wǎng)絡(luò)成本和能控性的魯棒性指數(shù)繪制網(wǎng)絡(luò)成本-能控性的魯棒性指數(shù)曲線;
在能控性的魯棒性指數(shù)相等的情況下,從所述曲線中選取網(wǎng)絡(luò)成本最小值對應(yīng)的第一模型參數(shù)值,進而確定所述非線性負載容量模型。
根據(jù)本發(fā)明的一個實施例,根據(jù)所述第一鄰接矩陣,采用極大似然估計法計算所述有向網(wǎng)絡(luò)的度分布冪律指數(shù)。
根據(jù)本發(fā)明的一個實施例,根據(jù)所述第一鄰接矩陣,采用出-入度相關(guān)性定義計算所述出-入度相關(guān)性。
根據(jù)本發(fā)明的一個實施例,所述網(wǎng)絡(luò)成本定義表示為:
其中,hij和lij(0)分別表示所述有向網(wǎng)絡(luò)的邊aij的容量和初始負載,n表示有向網(wǎng)絡(luò)中的節(jié)點總數(shù),i、j表示有向網(wǎng)絡(luò)中的節(jié)點。
本發(fā)明的有益效果;
本發(fā)明通過提供一種復(fù)雜系統(tǒng)的能控性對相繼故障的魯棒性建模方法,可以使系統(tǒng)在較小的投資成本下實現(xiàn)其能控性對相繼故障的免疫,能夠有效地解決復(fù)雜系統(tǒng)的復(fù)雜耦合關(guān)系及非線性特點,實現(xiàn)復(fù)雜系統(tǒng)合理容量分布。
本發(fā)明的其它特征和優(yōu)點將在隨后的說明書中闡述,并且,部分地從說明書中變得顯而易見,或者通過實施本發(fā)明而了解。本發(fā)明的目的和其他優(yōu)點可通過在說明書、權(quán)利要求書以及附圖中所特別指出的結(jié)構(gòu)來實現(xiàn)和獲得。
附圖說明
為了更清楚地說明本發(fā)明實施例中的技術(shù)方案,下面將對實施例描述中所需要的附圖做簡單的介紹:
圖1是根據(jù)本發(fā)明的一個實施例的方法流程圖;
圖2是根據(jù)本發(fā)明的一個實施例的成本-指數(shù)曲線示意圖。
具體實施方式
以下將結(jié)合附圖及實施例來詳細說明本發(fā)明的實施方式,借此對本發(fā)明如何應(yīng)用技術(shù)手段來解決技術(shù)問題,并達成技術(shù)效果的實現(xiàn)過程能充分理解并據(jù)以實施。需要說明的是,只要不構(gòu)成沖突,本發(fā)明中的各個實施例以及各實施例中的各個特征可以相互結(jié)合,所形成的技術(shù)方案均在本發(fā)明的保護范圍之內(nèi)。
為解決復(fù)雜系統(tǒng)的合理容量分布問題,本發(fā)明提供了一種基于負載容量模型的研究復(fù)雜系統(tǒng)能控性對相繼故障的魯棒性建模方法,使復(fù)雜系統(tǒng)在較小的投資成本下實現(xiàn)最強的對相繼故障的能控性的魯棒性,能夠有效地解決復(fù)雜系統(tǒng)的復(fù)雜耦合關(guān)系及非線性特點,實現(xiàn)復(fù)雜系統(tǒng)合理容量分布。
如圖1所示為根據(jù)本發(fā)明的一個實施例的方法流程圖,以下參考圖1來對本發(fā)明進行詳細說明。
如圖1所示,首先,在步驟s110中,將系統(tǒng)抽象為有向網(wǎng)絡(luò)并獲取該有向網(wǎng)絡(luò)的網(wǎng)絡(luò)拓撲性質(zhì)、初始負載和初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目。
該步驟具體包括以下幾個步驟。首先,為有利于對復(fù)雜系統(tǒng)進行分析,將復(fù)雜系統(tǒng)抽象為有向網(wǎng)絡(luò)進行研究。其中,復(fù)雜網(wǎng)絡(luò)中的網(wǎng)絡(luò)節(jié)點為復(fù)雜系統(tǒng)中信息、能量、物質(zhì)的處理、加工或中轉(zhuǎn)組件,復(fù)雜網(wǎng)絡(luò)中的連接網(wǎng)絡(luò)節(jié)點的邊負責(zé)傳輸。
接著,根據(jù)有向網(wǎng)絡(luò)的各節(jié)點間的連接狀況生成第一鄰接矩陣a,其中,第一鄰接矩陣中的元素為零表示兩節(jié)點之間無連接,元素為1表示兩節(jié)點之間有連接。具體的,假設(shè)復(fù)雜系統(tǒng)抽象出多個節(jié)點,如果存在連接節(jié)點i到節(jié)點j的邊aij,則記該連接的邊aij=1,i,j=1,2,...,n;否則記aij=0,所有邊的連接情況構(gòu)成第一鄰接矩陣a∈rn×n,n表示復(fù)雜網(wǎng)絡(luò)中節(jié)點總數(shù)。
最后,根據(jù)第一鄰接矩陣獲取有向網(wǎng)絡(luò)的網(wǎng)絡(luò)拓撲性質(zhì)、初始負載和初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目,其中,網(wǎng)絡(luò)拓撲性質(zhì)包括度分布冪律指數(shù)和出-入度相關(guān)性。
實際復(fù)雜系統(tǒng)抽象的有向網(wǎng)絡(luò)的度分布往往遵循冪函數(shù)分布,即,p(k)~k-γ,γ≥2,其中,p(k)表示度分布;γ表示冪律指數(shù),反映了網(wǎng)絡(luò)的異質(zhì)性大小,通常利用第一鄰接矩陣采用極大似然估計法計算得到對應(yīng)的出度和入度。
有向網(wǎng)絡(luò)的出-入度相關(guān)性定義表示為:
其中,
同時,根據(jù)第一鄰接矩陣,計算有向網(wǎng)絡(luò)的初始負載,并采用最大匹配算法計算有向網(wǎng)絡(luò)的初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目。
接下來在步驟s120中,建立系統(tǒng)的非線性負載容量模型,并根據(jù)網(wǎng)絡(luò)拓撲性質(zhì)確定所述非線性負載容量模型中第一模型參數(shù)的取值范圍。
具體的,為了靈活調(diào)節(jié)不同負載的容量大小,本發(fā)明采用的非線性負載容量模型表示為:
其中,lij(0)表示復(fù)雜網(wǎng)絡(luò)的邊aij的初始負載,此處的負載由邊的中心介數(shù)確定,即由通過邊aij的最短路徑的數(shù)目確定,i、j表示有向網(wǎng)絡(luò)的網(wǎng)絡(luò)節(jié)點,α表示用于調(diào)整容量大小的第一模型參數(shù),β表示用于調(diào)整容量大小的第二模型參數(shù),i,j=1,2,...,n,n為網(wǎng)絡(luò)的節(jié)點數(shù)。
在非線性負載容量模型中,邊aij的負載lij定義為通過這條邊的最短路徑的數(shù)目,反應(yīng)了該邊承載的信息、能量或物質(zhì)的多少。邊aij的容量hij定義為該邊所能承載的最大負載。
在本發(fā)明的一個實施例中,如有向網(wǎng)絡(luò)的度分布冪律指數(shù)大于2.2,并且出-入度相關(guān)性大于-0.2,則設(shè)置第一模型參數(shù)α為1,否則設(shè)置第一模型參數(shù)α的取值范圍為[0.7,1)。
接下來在步驟s130中,以預(yù)定取值方式從取值范圍內(nèi)抽取若干第一模型參數(shù)值,并根據(jù)預(yù)設(shè)網(wǎng)絡(luò)成本步長和初始負載,計算有向網(wǎng)絡(luò)對應(yīng)各第一模型參數(shù)值的容量。
此處以預(yù)定取值方式從第一模型參數(shù)的取值范圍內(nèi)抽取若干第一模型參數(shù)值,指的是第一模型參數(shù)α可為取值范圍內(nèi)的任意多個取值,例如α可以按間距0.1依次取值0.7、0.8、0.9等不同的值。當(dāng)然,在α取1時,則直接取1即可,不存在抽取多個取值的情況。
具體的,在實現(xiàn)步驟s130時,首先,根據(jù)預(yù)設(shè)網(wǎng)絡(luò)成本步長、第一模型參數(shù)值和初始負載,計算對應(yīng)第一模型參數(shù)的非線性負載容量模型的第二模型參數(shù)步長。此處以預(yù)設(shè)成本步長為0.1為例進行說明,本發(fā)明不限于此。第一模型參數(shù)值以抽取的取值范圍內(nèi)的某一值為例,該取值范圍內(nèi)抽取的其他值也需進行相同的運算,此處不加贅述。
對某一選定的第一模型參數(shù)α,根據(jù)設(shè)定網(wǎng)絡(luò)成本e的步長δe,并且e通常從1開始取值,成本的步長與模型參數(shù)的關(guān)系可由式(3)描述:
其中,δβ為第二模型參數(shù)β對應(yīng)δe的步長,由此可得式(4):
這樣就得到了對應(yīng)第一模型參數(shù)α和網(wǎng)絡(luò)成本e的步長δe的第二模型參數(shù)β的步長δβ,這樣取得的第二模型參數(shù)β的步長δβ可以保證網(wǎng)絡(luò)成本的均勻增長,方便不同成本-能控性魯棒性曲線的橫向和縱向比較。
最后,以第二模型參數(shù)步長為基準增量逐步增加第二模型參數(shù),并采用非線性負載容量模型計算第一模型參數(shù)及對應(yīng)第二模型參數(shù)步長條件下的有向網(wǎng)絡(luò)的容量。具體的,根據(jù)第二模型參數(shù)β步長,采用非線性負載容量模型計算在第一模型參數(shù)α及對應(yīng)第二模型參數(shù)β步長條件下的非線性負載容量。根據(jù)第二模型參數(shù)β的步長,可以得到相距相同步長的多個第二模型參數(shù)β的取值;根據(jù)對應(yīng)的第一模型參數(shù)α和多個β的取值,通過式(3)可以計算得到多個非線性負載容量。不同的第一模型參數(shù)α可以得到對應(yīng)不同的第二模型參數(shù)β步長,進而得到對應(yīng)抽取的多個第一模型參數(shù)α的非線性負載容量。
接下來,在步驟s140中,計算有向網(wǎng)絡(luò)在相繼故障后最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目,并結(jié)合初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目計算系統(tǒng)能控性的魯棒性指數(shù)。
具體的,首先根據(jù)有向網(wǎng)絡(luò)的初始負載,確定并移除有向網(wǎng)絡(luò)負載最高的邊,以使有向網(wǎng)絡(luò)的負載情況發(fā)生變化。
接著,負載變化后,移除有向網(wǎng)絡(luò)中負載超過其容量的邊,重新計算當(dāng)前情況下有向網(wǎng)絡(luò)的負載,并進一步移除負載超過容量的邊,重復(fù)該過程,直至網(wǎng)絡(luò)中所有邊的負載不超過其容量,得到有向網(wǎng)絡(luò)的第二鄰接矩陣。在該過程中,根據(jù)當(dāng)前已經(jīng)確定的有向網(wǎng)絡(luò)各邊的負載,確定負載最高的邊并移除該邊,移除邊即令其所對應(yīng)的鄰接矩陣元素aij=0。網(wǎng)絡(luò)的最短路徑分布由于該邊的移除而發(fā)生改變,即網(wǎng)絡(luò)各邊負載發(fā)生變化,變化后部分邊的負載可能超過邊的容量,進而導(dǎo)致這些邊失效。失效過程繼續(xù)直至所有邊的負載不超過容量,這個過程稱為相繼故障。在相繼故障停止后,移除有向網(wǎng)絡(luò)中負載超過其容量的邊,重新計算當(dāng)前情況下有向網(wǎng)絡(luò)的負載,并進一步移除負載超過容量的邊,重復(fù)該過程,直至網(wǎng)絡(luò)中所有邊的負載不超過其容量,得到有向網(wǎng)絡(luò)的第二鄰接矩陣a’。
接著,根據(jù)第二鄰接矩陣a’計算相繼故障停止后有向網(wǎng)絡(luò)的最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目。
最后,取相繼故障發(fā)生前初始最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目與相繼故障停止后所述有向網(wǎng)絡(luò)的最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目的比值,并將該比值作為系統(tǒng)能控性的魯棒性指數(shù)。具體的,可以采用式(5)計算網(wǎng)絡(luò)能控性的魯棒性指數(shù):
其中,nd0和nd1分別表示網(wǎng)絡(luò)相繼故障前后最小驅(qū)動節(jié)點集中數(shù)目,通過對應(yīng)的鄰接矩陣計算得到。r越趨近于1,則網(wǎng)絡(luò)的能控性的魯棒性越強。相繼故障前網(wǎng)絡(luò)的最小驅(qū)動節(jié)點集中節(jié)點的數(shù)目通過第一鄰接矩陣a采用最大匹配算法計算得到。
最后,在步驟s150中,根據(jù)初始負載和對應(yīng)各第一模型參數(shù)值的容量以及系統(tǒng)能控性的魯棒性指數(shù),確定第一模型參數(shù)值,進而確定非線性負載容量模型。
具體的,首先利用初始負載和對應(yīng)各第一模型參數(shù)值的容量,采用網(wǎng)絡(luò)成本定義計算有向網(wǎng)絡(luò)對應(yīng)第一模型參數(shù)值的網(wǎng)絡(luò)成本,即利用式(3)計算對應(yīng)第一模型參數(shù)值的網(wǎng)絡(luò)成本。
接著,根據(jù)對應(yīng)第一模型參數(shù)值的網(wǎng)絡(luò)成本和能控性的魯棒性指數(shù)繪制網(wǎng)絡(luò)成本-能控性的魯棒性指數(shù)曲線。具體的,以網(wǎng)絡(luò)成本e為橫軸,式(5)中的指數(shù)r為縱軸,繪制網(wǎng)絡(luò)成本-能控性的魯棒性指數(shù)曲線,其中網(wǎng)絡(luò)成本e的增加通過逐步按步長增加參數(shù)β利用式(2)和式(3)計算得到。能控性的魯棒性隨著網(wǎng)絡(luò)成本的增加逐漸增強,在成本達到一定值后,能控性的魯棒性不再增強,這時網(wǎng)絡(luò)不會由于移除最負載邊而發(fā)生相繼故障,即實現(xiàn)了能控性對相繼故障的免疫。
最后,在系統(tǒng)能控性的魯棒性指數(shù)相等的情況下,從曲線中選取網(wǎng)絡(luò)成本最小值對應(yīng)的第一模型參數(shù)值,進而確定非線性負載容量模型。通過觀察網(wǎng)絡(luò)成本-網(wǎng)絡(luò)能控性的魯棒性曲線選取合適的參數(shù)α和網(wǎng)絡(luò)成本e,即在指數(shù)r相等情況下,基于多個參數(shù)α繪制的網(wǎng)絡(luò)成本-網(wǎng)絡(luò)能控性的魯棒性曲線中選取成本e最小時對應(yīng)的參數(shù)α。從不同成本-能控性的魯棒性曲線中選取一條最早實現(xiàn)能控性對相繼故障的免疫的曲線,即該曲線能夠以最小的網(wǎng)絡(luò)成本實現(xiàn)所示系統(tǒng)能控性對相繼故障的免疫,該曲線對應(yīng)的第一模型參數(shù)即為所求,從而確定所述系統(tǒng)對應(yīng)的最佳容量分布的非線性負載容量。
以下通過一個具體的實施例來對本發(fā)明進行驗證說明。
步驟一:抽象出網(wǎng)絡(luò),獲得鄰接矩陣a,根據(jù)極大似然參數(shù)估計法獲得網(wǎng)絡(luò)的冪律指數(shù)γ=2.34,根據(jù)式(1)獲得網(wǎng)絡(luò)的出-入度相關(guān)性r(out,in)=-0.380。
步驟二:由于網(wǎng)絡(luò)冪律指數(shù)γ>2.2,但是出-入度相關(guān)性r(out,in)<-0.2,取參數(shù)0.7≤α<1,這里設(shè)置參數(shù)α=0.7,0.8,0.9。
步驟三:選取成本e的步長為0.1,分別根據(jù)參數(shù)α=0.7,0.8,0.9,結(jié)合公式(4)計算出參數(shù)β的步長。以成本e為橫軸,公式(5)中的指數(shù)r為縱軸,繪制成本-指數(shù)曲線,如圖2所示。
步驟四:如圖2所示,可得參數(shù)α=0.7時網(wǎng)絡(luò)的能控性可以在相對較小的網(wǎng)絡(luò)成本情況下實現(xiàn)最強的能控性魯棒性,最小的網(wǎng)絡(luò)成本e=1.5。
本發(fā)明通過提供一種復(fù)雜系統(tǒng)的能控性對相繼故障的魯棒性建模方法,模擬不同成本下相繼故障對能控性的影響,在此仿真模擬的基礎(chǔ)上確定合理的容量分布,實現(xiàn)以盡量小的投資成本來實現(xiàn)復(fù)雜系統(tǒng)能控性對相繼故障的免疫的目的,能夠有效地解決復(fù)雜系統(tǒng)的復(fù)雜耦合關(guān)系及非線性特點,實現(xiàn)復(fù)雜系統(tǒng)合理容量分布。
雖然本發(fā)明所公開的實施方式如上,但所述的內(nèi)容只是為了便于理解本發(fā)明而采用的實施方式,并非用以限定本發(fā)明。任何本發(fā)明所屬技術(shù)領(lǐng)域內(nèi)的技術(shù)人員,在不脫離本發(fā)明所公開的精神和范圍的前提下,可以在實施的形式上及細節(jié)上作任何的修改與變化,但本發(fā)明的專利保護范圍,仍須以所附的權(quán)利要求書所界定的范圍為準。